分析 (1)利用基本不等式得出f(x)的最小值;
(2)根據(jù)x和a的范圍判斷f′(x)的符號(hào),得出f(x)的單調(diào)性,根據(jù)單調(diào)性得出最小值.
解答 解:(1)a=4時(shí),f(x)=x+$\frac{4}{x+1}$=x+1+$\frac{4}{x+1}$-1≥2$\sqrt{(x+1)•\frac{4}{x+1}}$-1=3.
當(dāng)且僅當(dāng)x+1=$\frac{4}{x+1}$即x=1時(shí)取等號(hào).
∴f(x)的最小值為f(1)=3.
(2)f′(x)=1-$\frac{a}{(x+1)^{2}}$=$\frac{(x+1)^{2}-a}{(x+1)^{2}}$,
∵x∈[0,+∞),a∈(0,1),
∴(x+1)2-a>0,即f′(x)>0,
∴f(x)在[0,+∞)上是增函數(shù),
∴fmin(x)=f(0)=a.
點(diǎn)評(píng) 本題考查了函數(shù)的最值計(jì)算,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}x'=2x\\ y'=\sqrt{3}y\end{array}\right.$ | B. | $\left\{\begin{array}{l}x'=\frac{1}{2}x\\ y'=\frac{{\sqrt{3}}}{3}y\end{array}\right.$ | C. | $\left\{\begin{array}{l}x'=4x\\ y'=3y\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x′=\frac{1}{4}x}\\{y′=\frac{1}{3}y}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 669 | B. | 670 | C. | 2008 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≤1 | B. | a≤0 | C. | a>0或a≤-1 | D. | a>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com