15.某空間幾何體的底面為正方形,其三視圖如圖所示,則該空間幾何體的體積等于( 。
A.1B.2C.3D.4

分析 由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的錐體,分別計(jì)算底面面積和高,代入錐體體積公式,可得答案.

解答 解:由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的錐體,
錐體的底面面積S=$\frac{1}{2}$×2×2=2,
錐體的高h(yuǎn)=$\sqrt{{\sqrt{13}}^{2}-{2}^{2}}$=3,
故錐體的體積V=$\frac{1}{3}Sh$=2,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)a∈R,函數(shù)f(x)=2x2+(x-a)|x-a|,g(x)=lnx;
(1)若f(0)=1,試判斷y=f[g(x)]在[e,+∞)上的單調(diào)性(無(wú)需證明);
(2)求f(x)的最小值;
(3)設(shè)h(x)=2x2+(3a-2)x-(5a2-7a-3),且x∈(a,+∞),求不等式f(x)>h(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知全集U={1,2,3,4,5},集合 A={1,4},B={1,3,5},則(∁UA)∩(∁UB)=(  )
A.{2}B.{1,2}C.{3,5}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“a=1”是“直線y=x與函數(shù)y=ln(x+a)的圖象有且僅有一個(gè)交點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)A($\frac{π}{8}$,f($\frac{π}{8}$))和直線x=$\frac{3π}{8}$分別是函數(shù)f(x)=2$\sqrt{2}$sin?xsin(?x+$\frac{π}{4}$)(?>0)相鄰的一個(gè)對(duì)稱中心和一條對(duì)稱軸,將函數(shù)f(x)的圖象向右平移φ個(gè)單位得到函數(shù)g(x)的圖象,若當(dāng)x=$\frac{π}{3}$時(shí),g(x)取最大值,則g(x)在[-$\frac{π}{2}$,0]上單調(diào)增區(qū)間為[-$\frac{π}{6}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2cos2$\frac{x}{2}$+$\sqrt{3}$sinx.
(1)求函數(shù)f(x)的最小正周期和值域;
(2)若α為第二象限角,且f(α+$\frac{π}{3}$)=-$\frac{1}{5}$,求$\frac{cos2α}{1-tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知y=f(x)(x∈D,D為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間[a,b]⊆D,使函數(shù)f(x)在區(qū)間[a,b]上的值域?yàn)閇a,b],那么稱y=f(x),x∈D為閉函數(shù);
請(qǐng)解答以下問(wèn)題
(1)求閉函數(shù)y=-x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=x+$\frac{1}{x}$(x∈(0,+∞))是否為閉函數(shù)?并說(shuō)明理由;
(3)若y=k+$\sqrt{x}$是閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)Z滿足(2-i)2Z=1(i為虛數(shù)單位).則復(fù)數(shù)Z的虛部為$\frac{4}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)fn(x)=n2x2(1-x)n(n為正整數(shù)),則fn(x)在[0,1]上的最大值為( 。
A.0B.1C.(1-$\frac{2}{2+n}$)nD.4($\frac{2}{2+n}$)n+2

查看答案和解析>>

同步練習(xí)冊(cè)答案