函數(shù)y=
log2(2x2-x)
的定義域為( 。
A、{x|x≤-
1
2
,或x≥1}
B、{x|x<-
1
2
,或x>1}
C、{x|x≤0,或x≥
1
2
}
D、{x|x<0,或x>
1
2
}
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由對數(shù)函數(shù)的性質(zhì)及二次根式的性質(zhì)得2x2-x≥1,解出即可.
解答: 解:∵
log
2x2-x
2
≥0,
∴2x2-x≥1,解得:x≤-
1
2
或x≥1,
故選:A.
點(diǎn)評:本題考查了對數(shù)函數(shù)的性質(zhì)及二次根式的性質(zhì),求函數(shù)的定義域,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=Z,A={-1,0,1,2},B={x|x2=2x},則A∩∁UB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={(2,3)},則下列關(guān)系成立的是(  )
A、2∈M
B、3∈M
C、(2,3)∈M
D、(2,3)⊆M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-|x-2|-4≤0},B={x|x2-(2m+1)x+2m<0}.
(Ⅰ)化簡集合A;
(Ⅱ)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈[0,+∞),(log32)x≤1,則下列說法正確的是( 。
A、p是假命題:¬p:?x0∈[0,+∞),(log32)x0>1
B、p是假命題:¬p:?x∈[0,+∞),(log32)x≥1
C、p是真命題:¬p:?x0∈[0,+∞),(log32)x0>1
D、p是假命題:¬p:?x∈[0,+∞),(log32)x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
1-x2
+ln(1+x)的定義域為M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2≤x≤5},
(1).設(shè)U=R,若B={x|m≤x≤m+3},且(∁UA)∩B=∅,求實(shí)數(shù)m的取值范圍;
(2).若B={x|m+1≤x≤2m-1},且A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x+
π
6
)=
1
4
,x∈[
π
2
,π],求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
cosx-
3
,sinx),
b
=(1+cosx,cosx),設(shè)f(x)=
a
b
,求:
(1)f(x)的解析式并簡化;
(2)求函數(shù)f(x)在區(qū)間[0,
π
6
]上的值域.

查看答案和解析>>

同步練習(xí)冊答案