【題目】已知函數(shù)f(x)在R上的導函數(shù)為f′(x),若f(x)<2f′(x)恒成立,且f(ln4)=2,則不等式f(x)>e 的解集是(
A.(ln2,+∞)
B.(2ln2,+∞)
C.(﹣∞,ln2)
D.(﹣∞,2ln2)

【答案】B
【解析】解:∵x∈R,都有2f′(x)>f(x)成立,
∴f′(x)﹣ f(x)>0,于是有( )′>0,
令g(x)= ,則有g(shù)(x)在R上單調(diào)遞增,
∵不等式f(x)> ,
∴g(x)>1,
∵f(ln4)=2,
∴g(ln4)=1,
∴x>ln4=2ln2,
故選:B.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓的離心率為,過橢圓右焦點作兩條互相垂直的弦.當直線斜率為0時,

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2 ,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC=2b﹣c.
(1)求sinA的值;
(2)若a=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|.
(1)若a=2,解不等式f(x)≥2;
(2)若a>1,x∈R,f(x)+|x﹣1|≥1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=e2x1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直線上取一點,作以為焦點的橢圓,則當最小時,橢圓的標準方程為____________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,角A,B,C的對邊分別為a,b,c,cos A=,sin B=cos C.

(1)tan C的值;

(2)a=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A,B,C的對邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項.
(1)求∠B的大小;
(2)若a+c= ,求△ABC的面積.

查看答案和解析>>

同步練習冊答案