分析 根據(jù)A,B,D三點(diǎn)共線,得出t+(2+t)=1,求出t的值,化簡(jiǎn)$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$,D是AB的中點(diǎn),即可求出面積比是多少.
解答 解:∵A,B,D三點(diǎn)共線,且$\overrightarrow{CD}$=t$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,
∴t+(2+t)=1,
解得t=-$\frac{1}{2}$;
∴$\overrightarrow{CD}$=-$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{3}{2}$$\overrightarrow{CB}$,
∴$\overrightarrow{CD}$-$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{CB}$-$\overrightarrow{CA}$),
即$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BA}$;如圖所示,
∴BD=$\frac{1}{2}$AB,即BD=AD;
∴△CDB的面積和△CDA的面積之比為1:1.
故答案為:1:1.
點(diǎn)評(píng) 本題考查了平面向量的應(yīng)用問(wèn)題,解題的關(guān)鍵是利用三點(diǎn)共線求出t的值,化簡(jiǎn)$\overrightarrow{CD}$=t$\frac{1}{2}$$\overrightarrow{CA}$+(2+t)$\overrightarrow{CB}$,得出D是AB的中點(diǎn),是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-3,-2$\sqrt{5}$+3) | B. | (-∞,-2$\sqrt{5}$+3) | C. | (-$\frac{1}{2}$,4-$\sqrt{17}$) | D. | (-∞,4-$\sqrt{17}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com