分析 (I)利用線面垂直的性質(zhì)定理可得PA⊥BD,PC⊥BD,再利用線面垂直的判定定理即可證明.
(II)由于AB∥CD,只要求出點(diǎn)A到平面PCD的距離即可,利用線面面面垂直的判定與性質(zhì)定理即可得出.
解答 (I)證明:∵PA⊥平面ABCD,∴PA⊥BD,
∵點(diǎn)E在線段PC上,PC⊥平面BDE.
∴PC⊥BD,又PC∩PA=P,
∴BD⊥平面PAC;
(II)解:∵AB∥CD,AB?平面PCD,CD?平面PCD,
∴AB∥平面 PCD.
∴只要求出點(diǎn)A到平面PCD的距離即可.
過(guò)A作AM⊥PD,垂足為M.
∵PA⊥平面ABCD,
∴平面PAD⊥平面ABCD,
∵CD⊥AD,平面PAD∩平面ABCD=AD,
∴CD⊥平面PAD,
∴CD⊥AM,
CD∩PD=D,
∴AM⊥平面ACD,
∵AM=$\frac{PA•AD}{PD}$=$\frac{1×2}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{2\sqrt{5}}{5}$.
∴點(diǎn)B到平面PCD的距離是$\frac{2\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了空間位置關(guān)系及其距離,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2x+1(x>1) | B. | y=x2-x+1 | C. | $y=\frac{1}{x}$ | D. | y=$\frac{1}{{x}^{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com