7.過原點(diǎn)向圓x2+y2-2x-4y+4=0引切線,則切線方程為$y=\frac{3}{4}x$或x=0.

分析 求出圓的標(biāo)準(zhǔn)方程,求出圓心和半徑,根據(jù)直線和圓相切的等價(jià)條件進(jìn)行求解即可.

解答 解:圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=1,
則圓心為(1,2),半徑R=1,
若切線斜率k不存在,即x=0時(shí),滿足條件.
若切線斜率k存在,則設(shè)切線方程為y=kx,
即kx-y=0,
圓心到直線的距離d=$\frac{|k-2|}{\sqrt{1+{k}^{2}}}$=1,
得|k-2|=$\sqrt{1+{k}^{2}}$,
平方得k2-4k+4=1+k2,
即k=$\frac{3}{4}$,此時(shí)切線方程為$y=\frac{3}{4}x$,
綜上切線方程為:$y=\frac{3}{4}x$或x=0,
故答案為:$y=\frac{3}{4}x$或x=0.

點(diǎn)評(píng) 本題主要考查直線和圓位置關(guān)系的應(yīng)用,根據(jù)直線和圓相切與半徑之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\sqrt{1-{x}^{2}}$(-1≤x≤0),則f-1(0.5)=$-\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為落實(shí)國(guó)務(wù)院“十三五”規(guī)劃中的社會(huì)民生建設(shè),某醫(yī)院到社區(qū)檢查老年人的體質(zhì)健康情況.從該社區(qū)全體老年人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式如圖:根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于80的為優(yōu)良.
(Ⅰ)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該社區(qū)全體老年人中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(Ⅱ)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足z•i=1+i(i是虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a=($\frac{3}{5}$)${\;}^{\frac{2}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,c=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,則( 。
A.a<b<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2且(2+b)(sinA-sinB)=(c-b)sinC
(1)求角A的大。
(2)求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-x+1,x≥1}\end{array}\right.$是定義在R上的減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{7}$,+∞)B.[$\frac{1}{7}$,$\frac{1}{3}$)C.(-∞,$\frac{1}{3}$)D.(-∞,$\frac{1}{7}$]∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上異于P,D的動(dòng)點(diǎn).設(shè)$\frac{PE}{ED}$=m,則“0<m<2”是三棱錐C-ABE的體積不小于1的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過M(-b,0)的直線l與橢圓C交于A,B兩點(diǎn)
(1)已知橢圓C的離心率為$\frac{\sqrt{3}}{3}$,過N(b,0)作x軸的垂線與直線l交于P.且NP的中點(diǎn)在C上.求直線1的傾斜角;
(2)設(shè)B關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為Q,求△ABQ的面積最大值(用a,b表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案