【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF= ,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A﹣BEF的體積為定值;
(4)異面直線AE,BF所成的角為定值.
其中錯(cuò)誤的結(jié)論有( )

A.0個(gè)
B.1 個(gè)
C.2個(gè)
D.3個(gè)

【答案】B
【解析】解:連結(jié)BD,則AC⊥平面BB1D1D,BD∥B1D1 ,
∴AC⊥BE,EF∥平面ABCD,三棱錐A﹣BEF的體積為定值,
從而(1)(2)(3)正確.
當(dāng)點(diǎn)E在D1處,F(xiàn)為D1B1的中點(diǎn)時(shí),異面直線AE,BF所成的角是∠FBC1 ,
當(dāng)E在上底面的中心時(shí),F(xiàn)在C1的位置,
異面直線AE,BF所成的角是∠EAA1
顯然兩個(gè)角不相等,(4)不正確.
故選:B.

【考點(diǎn)精析】本題主要考查了棱柱的結(jié)構(gòu)特征的相關(guān)知識(shí)點(diǎn),需要掌握兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log4(2x+3﹣x2).
(1)求函數(shù)f(x)的單調(diào)區(qū)間,
(2)當(dāng)x∈(0, ]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, 底面, , , , 分別是 的中點(diǎn), 上,且

(1)求證: 平面

(2)在線段上上是否存在點(diǎn),使二面角

的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}首項(xiàng)a1=1,公差為d,且數(shù)列 是公比為4的等比數(shù)列,
(1)求d;
(2)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(3)求數(shù)列 的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計(jì)結(jié)果如表:

(Ⅰ)求甲流水線樣本合格的頻率;

(Ⅱ)從乙流水線上重量值落在內(nèi)的產(chǎn)品中任取2個(gè)產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,分別是角A,B,C的對(duì)邊,且.

(1)求角的值;

(2)已知函數(shù),將的圖像向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線 l1和l2 是異面直線,l1在平面 α內(nèi),l2在平面β內(nèi),l是平面α與平面β的交線,則下列命題正確的是( )
A.l與l1 , l2都不相交
B.l與l1 , l2都相交
C.l至多與l1 , l2中的一條相交
D.l至少與l1 , l2中的一條相交

查看答案和解析>>

同步練習(xí)冊(cè)答案