【題目】已知{an}是等差數(shù)列,滿(mǎn)足a1=3,a4=12,數(shù)列{bn}滿(mǎn)足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,由題意得
d= = =3.
∴an=a1+(n﹣1)d=3n(n=1,2,…).
∴數(shù)列{an}的通項(xiàng)公式為:an=3n;
設(shè)等比數(shù)列{bn﹣an}的公比為q,由題意得:
q3= = =8,解得q=2.
∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1.
從而bn=3n+2n﹣1(n=1,2,…).
∴數(shù)列{bn}的通項(xiàng)公式為:bn=3n+2n﹣1
(2)解:由(1)知bn=3n+2n﹣1(n=1,2,…).
數(shù)列{3n}的前n項(xiàng)和為 n(n+1),數(shù)列{2n﹣1}的前n項(xiàng)和為 =2n﹣1.
∴數(shù)列{bn}的前n項(xiàng)和為 n(n+1)+2n﹣1
【解析】(1)利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式先求得公差和公比,即可求數(shù)列的通項(xiàng)公式;(2)利用分組求和的方法求解數(shù)列的和,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求解數(shù)列的和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:若實(shí)數(shù)x滿(mǎn)足x2﹣4ax+3a2≤0,其中a>0;命題q:實(shí)數(shù)x滿(mǎn)足
(1)若a=1且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,線(xiàn)段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF= ,給出下列結(jié)論:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱錐A﹣BEF的體積為定值;
(4)異面直線(xiàn)AE,BF所成的角為定值.
其中錯(cuò)誤的結(jié)論有( )
A.0個(gè)
B.1 個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)(),過(guò)其焦點(diǎn)作斜率為1的直線(xiàn)交拋物線(xiàn)于, 兩點(diǎn),且,
(1)求拋物線(xiàn)的方程;
(2)已知?jiǎng)狱c(diǎn)的圓心在拋物線(xiàn)上,且過(guò)點(diǎn),若動(dòng)圓與軸交于兩點(diǎn),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(),,其中為自然對(duì)數(shù)的底數(shù).
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若在(1)的條件下,當(dāng)取最大值時(shí),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P﹣ABC的底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為8,E,F(xiàn)分別為PB,PC上的動(dòng)點(diǎn),求截面△AEF周長(zhǎng)的最小值,并求出此時(shí)三棱錐P﹣AEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足a1=3,an+1﹣3an=3n(n∈N*),數(shù)列{bn}滿(mǎn)足bn= .
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三棱柱ABC﹣A1B1C1的棱長(zhǎng)都為2,E,F(xiàn),G為 AB,AA1 , A1C1的中點(diǎn),則B1F 與面GEF成角的正弦值( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com