4.求下列函數(shù)的導(dǎo)數(shù).
(1)y=$\frac{1+cosx}{1-cosx}$
(2)y=(sinx-cosx)
(3)y=x3+3x2-1.

分析 利用求導(dǎo)公式分別進行求導(dǎo)即可.

解答 解:(1)y'=($\frac{1+cosx}{1-cosx}$)'=$\frac{-sinx(1-cosx)-(1+cosx)sinx}{(1-cosx)^{2}}$=$\frac{-2sinx}{(1-cosx)^{2}}$;
(2)y'=(sinx-cosx)'=cosx+sinx;
'(3)y'=(x3+3x2-1)'=3x2+6x.

點評 本題考查了導(dǎo)數(shù)的運算公式的運用;熟練掌握求導(dǎo)法則以及公式是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)數(shù)列{an}為等差數(shù)列,且a11=$\frac{3π}{8}$,若f(x)=sin2x+2cos2x,記bn=f(an),則數(shù)列{bn}的前21項和為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y=-4x2,則它的準線方程為(  )
A.y=$\frac{1}{16}$B.y=-$\frac{1}{16}$C.x=2D.x=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$x,y∈[-\frac{π}{4},\frac{π}{4}],a∈R$,且x3+sinx-2a=0,4y3+$\frac{1}{2}$sin2y+a=0,則cos(x+2y)的值為( 。
A.0B.$\frac{1}{4}$C.$-\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,$f(\frac{x}{3})=\frac{1}{2}f(x)$,且當0≤x1<x2≤1時,有f(x1)≤f(x2),則$f(\frac{1}{2016})$=(  )
A.$\frac{1}{32}$B.$\frac{1}{64}$C.$\frac{1}{128}$D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為$\frac{1}{2}$和$\frac{1}{3}$,且在A,B兩點投中與否相互獨立
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為${S_n}=3{n^2}+8n-6$,{bn}是等差數(shù)列,且an=bn+bn+1(n≥2).
(I)求數(shù)列{an}和{bn}的通項公式;
(II)令${c_n}={b_n}•{2^n}+{2^{n+1}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線x-2y+1=0與圓x2+y2=2相交于A,B兩點,則|AB|=$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{2}$),$\overrightarrow{n}$=($\sqrt{3}$Acosx,$\frac{A}{3}$cos2x)(A>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最大值為6,求A.

查看答案和解析>>

同步練習(xí)冊答案