18.在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前100個圈中的●的個數(shù)是( 。
A.12B.13C.14D.15

分析 把這些圈看作是數(shù)列:1,1,2,1,3,1,4,1…求前n項和小于等于100時的最大的整數(shù)項數(shù).

解答 解:s=(1+2+3+…+n)+n=$\frac{n(n+1)}{2}$+n≤100,
∴n(n+3)≤200
∴n=12.
故選A.

點評 本題考查數(shù)列的求和,利用分組求和法求和,由項數(shù)與數(shù)列和的關(guān)系求得,考查了靈活運用數(shù)列的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)矩陣A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,求矩陣A的逆矩陣的特征值及對應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx為奇函數(shù),且在x=4處取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)在[-5,6]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.5個人分4張無座足球票,每人至多分一張,而且必須分完,不同的分發(fā)種數(shù)有(  )
A.$A_5^4$種B.45C.$C_5^4$種D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x)=$\left\{{\begin{array}{l}{(a-2)x-1}&{(x≤1)}\\{{{log}_a}x}&{(x>1)}\end{array}}$是R上的增函數(shù),那么實數(shù)a的取值范圍是(2,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,則|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復(fù)數(shù)z=$\frac{3+4i}{2-i}$,則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.將邊長為4正三角形薄片,用平行于底邊的兩條直線剪成三塊(如圖所示),這兩條平行線間的距離為$\sqrt{3}$,其中間一塊是梯形記為ABCD,記$S=\frac{{{{({梯形ABCD的周長})}^2}}}{梯形ABCD的面積}$,則S的最小值為$\frac{32\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x-alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);
(2)設(shè)g(x)=-$\frac{a+1}{x}$,若在[1,e]上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案