19.拋擲兩枚硬幣,已知第一枚是正面,則第二枚也是正面的概率為$\frac{1}{2}$.

分析 把一枚質(zhì)地均勻的硬幣擲兩次,每次出現(xiàn)正面的概率都等于$\frac{1}{2}$,由此可得結(jié)論

解答 解:把一枚質(zhì)地均勻的硬幣擲兩次,每次擲硬幣的結(jié)果互不影響,
每次出現(xiàn)正面的概率都等于$\frac{1}{2}$,
故答案為 $\frac{1}{2}$

點(diǎn)評(píng) 本題主要考查古典概率、等可能事件的概率,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,直三棱柱ABC一A1B1C1中,AB=$\sqrt{2}$,AC=3,BC=$\sqrt{5}$,D是ACl的中點(diǎn),E是側(cè)棱BB1上的一個(gè)動(dòng)點(diǎn)
(1)當(dāng)E是BB1的中點(diǎn)時(shí),證明:DE∥平面A1B1C1
(2)在棱BB1上是否存在點(diǎn)E使平面AC1E⊥平面AC1C?若存在,求出$\frac{BE}{{B{B_1}}}$的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知定點(diǎn)A(-5,0),B(5,4),點(diǎn)P為雙曲線C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上右支上任意一點(diǎn),求|PB|-|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:sin1590°cos(-1830°)+tan1395°tan(-1200°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.直線l:$\left\{\begin{array}{l}{x=4t}\\{y=3t-2}\end{array}\right.$(t為參數(shù))被曲線C:$\left\{\begin{array}{l}{x=5+2cosθ}\\{y=3+2sinθ}\end{array}\right.$(θ為參數(shù))所截得的弦長(zhǎng)為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x+a|+|x+3|,
(1)若不等式f(x)≤8有解,求a的取值范圍;
(2)不等式f(x)>|a-2|對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知sinα-cosα=$\frac{3\sqrt{2}}{5}$,α∈(0,$\frac{π}{2}$),則sin(α+$\frac{π}{12}$)=(  )
A.$\frac{3-4\sqrt{3}}{10}$B.$\frac{3+4\sqrt{3}}{10}$C.$\frac{4+3\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC上的點(diǎn),將△AED和△DCF折起,使A,C兩點(diǎn)重合于P.

(1)求證:PD⊥EF;
(2)當(dāng)BE=BF=$\frac{1}{4}$BC時(shí),求四棱錐P-BEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在正整數(shù)k,使ak,S2k-1,a4k成等比數(shù)列?若存在,求k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案