【題目】已知函數(shù).
(1)求此函數(shù)的極大值,并請直接寫出此函數(shù)的零點個數(shù);
(2)若函數(shù),且此函數(shù)在區(qū)間內(nèi)單調(diào)遞增,求實數(shù)的取值范圍.
【答案】(1) 極大值;2個零點;(2).
【解析】
(1)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性從而確定極大值,由,且在上單調(diào)遞減知在定義域內(nèi)有兩個零點;(2)由題意得對任意的恒成立,則,利用導(dǎo)數(shù)求出函數(shù)的最大值即可求得a的范圍.
(1)函數(shù)的定義域為,
,令,解得,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
則在處取得極大值,
因為,所以為函數(shù)的一個零點,
又,,且在上單調(diào)遞減,
所以在上有一個零點,所以函數(shù)在定義域內(nèi)有兩個零點;
(2),則,
若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,則對任意的恒成立,
即對任意的恒成立,
,令,故,
當(dāng)時,,當(dāng)時,,
所以在上單調(diào)遞減,在上單調(diào)遞增,且,
所以當(dāng)時,,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線 .
(1)判斷直線與曲線的位置關(guān)系;
(2)若是曲線上的動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點,使得二面角的余弦值是,若不存在請說明理由,若存在請求出點所在的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù):
(1)請將列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過0.01的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 4 | ||
無武漢旅行史 | 10 | ||
總計 | 25 | 45 |
(2)已知在無武漢旅行史的10名患者中,有2名無癥狀感染者.現(xiàn)在從無武漢旅行史的10名患者中,選出2名進(jìn)行病例研究,記選出無癥狀感染者的人數(shù)為,求的分布列以及數(shù)學(xué)期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為2的等邊△ABC沿x軸正方向滾動,某時刻A與坐標(biāo)原點重合(如圖),設(shè)頂點A(x,y)的軌跡方程是y=f(x),關(guān)于函數(shù)y=f(x)有下列說法:
①f(x)的值域為[0,2];
②f(x)<f(4)<f(2018);
③f(x)是周期函數(shù)且周期為6;
④滾動后,當(dāng)頂點A第一次落在x軸上時,f(x)的圖象與x軸所圍成的圖形的面積為.
其中正確命題的序號是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次數(shù)學(xué)測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標(biāo)準(zhǔn)規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數(shù)學(xué)測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分?jǐn)?shù)記為
(1)求的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在上的最大值為,.
(1)若點在的圖象上,求函數(shù)圖象的對稱中心;
(2)將函數(shù)的圖象向右平移個單位,再將所得的圖象縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,得函數(shù)的圖象,若在上為增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年12月16日,公安部聯(lián)合阿里巴巴推出的“錢盾反詐機器人”正式上線,當(dāng)普通民眾接到電信網(wǎng)絡(luò)詐騙電話,公安部錢盾反詐預(yù)警系統(tǒng)預(yù)警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調(diào)查民眾對這一信息的了解程度,從5000多參與調(diào)查者中隨機抽取200個樣本進(jìn)行統(tǒng)計,得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40人.
(1)完成下列列聯(lián)表,問:能否在犯錯誤的概率不超過0.01的前提下,認(rèn)為200個參與調(diào)查者是否了解這一信息與性別有關(guān)?
了解 | 不了解 | 合計 | |
男性 | |||
女性 | |||
合計 |
(2)該自媒體對200個樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.
附:
P(K2≥k) | 0.01 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com