14.已知如圖所示的程序框圖,當輸入n=99時,輸出S的值(  )
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{98}{99}$D.$\frac{97}{98}$

分析 由圖知,每次進入循環(huán)體后,新的S值是原來的S加上$\frac{1}{i(i+1)}$得到的,故由此運算規(guī)律進行計算,當i=99時輸出的結果即可.

解答 解:由程序框圖有:每次進入循環(huán)體后,新的S值是原來的S加上$\frac{1}{i(i+1)}$得到的,
當i=99時S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{99×100}$=1-$\frac{1}{100}$=$\frac{99}{100}$.
故選:B.

點評 本題考查循環(huán)結構,通過運算規(guī)則求解最后運算結果,是算法中一種常見的題型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.曲線f(x)=$\frac{1}{2}$x2+lnx的切線的斜率的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若直線l的一般式方程為xsinθ-$\sqrt{3}$y+1=0(θ∈R),則直線l的傾斜角的取值范圍是$[0,\frac{π}{6}]∪[\frac{5π}{6},π)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,在平行四邊形ABCD中,AP⊥BD,垂足為P,且AP=2,則$\overrightarrow{AP}$•$\overrightarrow{AC}$=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an}滿足:a1=3,an+1=9•$\root{3}{{a}_{n}}$(n≥1),則$\underset{lim}{n→∞}$an=27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.雙曲線$\frac{x^2}{3}$-y2=1的兩條漸近線的方程為$x±\sqrt{3}y=0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在n行n列矩陣$|\begin{array}{l}{1}&{2}&{3}&{…}&{n-2}&{n-1}&{n}\\{2}&{3}&{4}&{…}&{n-1}&{n}&{1}\\{3}&{4}&{5}&{…}&{n}&{1}&{2}\\{…}&{…}&{…}&{…}&{…}&{…}&{…}\\{n}&{1}&{2}&{…}&{n-3}&{n-2}&{n-1}\end{array}|$中,記位于第i行j列的數(shù)為aij(i,j=1,2,…,n),當n=7時,表中所有滿足2i<j的aij和為41.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和為Sn,a1=1,an≠0,anan+1=4Sn-1(n∈N*)則數(shù)列{an}的通項公式為an=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.cos1050°=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案