3.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an≠0,anan+1=4Sn-1(n∈N*)則數(shù)列{an}的通項(xiàng)公式為an=2n-1.

分析 由anan+1=4Sn-1,可得當(dāng)n≥2時(shí),an-1an=4Sn-1-1,an≠0,兩式相減化為an+1-an-1=4,可得數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等差數(shù)列,進(jìn)而得出數(shù)列{an}的通項(xiàng)公式.

解答 解:∵anan+1=4Sn-1,
∴當(dāng)n≥2時(shí),an-1an=4Sn-1-1,anan+1-an-1an+1=4an,
∵an≠0,∴an+1-an-1=4,
當(dāng)n=1時(shí),a1a2=4a1-1,a1=1,解得a2=3,
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別為等差數(shù)列,公差為4,首項(xiàng)分別為1,3.
∴當(dāng)n=2k-1(k∈N*)為奇數(shù)時(shí),an=a2k-1=1+4(k-1)=4k-3=2n-1;
當(dāng)n=2k(k∈N*)為偶數(shù)時(shí),an=a2k=3+4(k-1)=2n-1.
可得an=2n-1.
故答案為:an=2n-1.

點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等差數(shù)列的定義及其通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=lnx+1的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(1,+∞)C.(-1,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知如圖所示的程序框圖,當(dāng)輸入n=99時(shí),輸出S的值( 。
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{98}{99}$D.$\frac{97}{98}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.有20件產(chǎn)品,其中5件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽取2件產(chǎn)品.求
(1)第一次抽到次品的概率;    
(2)第一次和第二次都抽到次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.仔細(xì)觀察下面○和●的排列規(guī)律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…
若依此規(guī)律繼續(xù)下去,得到一系列的○和●,那么在前150個(gè)○和●中,●的個(gè)數(shù)是( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖是-個(gè)幾何體的三視圖,在該幾何體的各個(gè)面中,面積最小的面的面積為(  )
A.4B.8C.4$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知全集U={x|1≤x≤5}.A={x|1≤x<a},若∁UA={x|2≤x≤5},a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知P(-2,1),Q(2,t).點(diǎn)M為直線(xiàn)y+1=0上的動(dòng)點(diǎn).若存在以PQ為直徑的圓過(guò)點(diǎn)M,則實(shí)數(shù)t的取值范圍為t≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}({sin^2}x-{cos^2}x)+2sinxcosx$.
(1)求f(x)最小正周期;
(2)設(shè)$x∈[-\frac{π}{3},\;\frac{π}{3}]$,求f(x)的值域和單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案