分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),由題意可得f′(3)=0,解方程可得a的值,即可得到切線的斜率,以及切點(diǎn),以及切線的方程;
(Ⅱ)求出f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間.
解答 解:(Ⅰ)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8的導(dǎo)數(shù)為f′(x)=6x2-6(a+1)x+6a,
f(x)在x=3處取得極值,可得f′(3)=54-18(a+1)+6a=0,
解得a=3,
可得f′(x)=6x2-6×4x+6×3,
即有f(x)在點(diǎn)A(1,f(1))處的切線斜率為k=0,
f(1)=2-12+18+8=16,
切點(diǎn)為(1,16),
f(x)在點(diǎn)A(1,f(1))處的切線方程為y=16;
(Ⅱ)由(Ⅰ)可得f′(x)=6x2-24x+18,
由f′(x)>0,可得x>3或x<1;
由f′(x)<0,可得1<x<3;
即有f(x)的減區(qū)間為(1,3),增區(qū)間為(-∞,1),(3,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的應(yīng)用:求切線的方程和單調(diào)區(qū)間、極值,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 17 | B. | 68 | C. | 8 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | (0,1) | C. | (1,2) | D. | (1,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 20 | C. | 21 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | B. | 向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度 | ||
C. | 向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 | D. | 向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
價(jià)格x(元) | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y(件) | 11 | 10 | 8 | 6 | 5 |
A. | 30 | B. | 35 | C. | 38 | D. | 40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com