A. | 120 | B. | 210 | C. | 252 | D. | 45 |
分析 由已知得到展開(kāi)式的通項(xiàng),得到第6項(xiàng)系數(shù),根據(jù)二項(xiàng)展開(kāi)式的系數(shù)性質(zhì)得到n,可求常數(shù)項(xiàng).
解答 解:由已知($\sqrt{x}$+$\frac{1}{\root{3}{x}}$)2n(n∈N*)展開(kāi)式中只有第6項(xiàng)系數(shù)為${C}_{2n}^{5}$最大,
所以展開(kāi)式有11項(xiàng),所以2n=10,即n=5,
又展開(kāi)式的通項(xiàng)為${C}_{10}^{k}(\sqrt{x})^{10-k}(\frac{1}{\root{3}{x}})^{k}$=${C}_{10}^{k}{x}^{5-\frac{5}{6}}k$,
令5-$\frac{5}{6}k$=0解得k=6,
所以展開(kāi)式的常數(shù)項(xiàng)為${C}_{10}^{6}={C}_{10}^{4}$=210;
故選:B
點(diǎn)評(píng) 本題考查了二項(xiàng)展開(kāi)式的系數(shù)以及求特征項(xiàng);解得本題的關(guān)鍵是求出n,利用通項(xiàng)求特征項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男生投擲距離(米) | … | [5.4,6.0) | [6.0,6.6) | [6.6,7.4) | [7.4,7.8) | [7.8,8.6) | [8.6,10.0) | [10.0,+∞) |
女生投擲距離(米) | … | [5.1,5.4) | [5.4,5.6) | [5.6,6.4) | [6.4,6.8) | [6.8,7.2) | [7.2,7.6) | [7.6,+∞) |
個(gè)人得分(分) | … | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{14}{3}$ | B. | $\frac{13}{3}$ | C. | $\frac{3}{14}$ | D. | $\frac{3}{13}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com