【題目】已知橢圓的離心率為分別為左,右焦點,分別為左,右頂點,原點到直線的距離為.設(shè)點在第一象限,連接交橢圓于點.

(1)求橢圓的方程

(2)若三角形的面積等于四邊形的面積,求直線的方程;

(3)求過點的圓方程(結(jié)果用表示.

【答案】(1).(2).(3) .

【解析】試題分析:(1)由離心率為,得,利用 兩點坐標(biāo)可得的方程為,由圓心到時直線的距離公式求得,則.(2)設(shè),由 兩點的坐標(biāo)可得直線 的方程,與橢圓的方程聯(lián)立可得 的坐標(biāo) 的橫、縱坐標(biāo)分別是 的高),代入三角形的面積公式結(jié)合面積相等的條件即得關(guān)于 的方程求出最后再將代入PA方程即可得所求. (3)所求圓的圓心為 的垂直平分線的交點,利用 三點的坐標(biāo)即可得的垂直平分線的方程,兩個方程聯(lián)立即可求得圓心的坐標(biāo),再代入圓的標(biāo)準(zhǔn)方程即可得所求.

試題解析:

(1)因為橢圓,

所以,

所以直線的方程為,

到直線的距離為,所以,

所以,

所以橢圓的方程為.

(2)設(shè),,

直線的方程為

,整理得,

解得,則點的坐標(biāo)是,

因為三角形的面積等于四邊形的面積所以三角形的面積等于三角形的面積,

,

,

,解得.

所以直線的方程為.

(3)因為,

所以的垂直平分線,

的垂直平分線為,

所以過三點的圓的圓心為

則過三點的圓方程為 ,

即所求圓方程為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:

(1)y關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,當(dāng)價格x=40/kg,日需求量y的預(yù)測值為多少?

參考公式:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應(yīng)的區(qū)間分別為, , ,繪制出頻率分布直方圖.

(1)求的值,并計算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,圓軸的一個交點為,圓的圓心為,為等邊三角形.

1)求拋物線的方程

2)設(shè)圓與拋物線交于、兩點,點為拋物線上介于、兩點之間的一點,設(shè)拋物線在點處的切線與圓交于、兩點,在圓上是否存在點,使得直線、均為拋物線的切線,若存在求點坐標(biāo)(用表示);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵大家節(jié)約用水,自2013年以后,上海市實行了階梯水價制度,其中每戶的綜合用水單價與戶年用水量的關(guān)系如下表所示.

分檔

戶年用水量

綜合用水單價/(元·

第一階梯

0220(含)

3.45

第二階梯

220300(含)

4.83

第三階梯

300以上

5.83

記戶年用水量為時應(yīng)繳納的水費為元.

1)寫出的解析式;

2)假設(shè)居住在上海的張明一家2015年共用水,則張明一家2015年應(yīng)繳納水費多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,

,

(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時,該公司在該特許商品的生產(chǎn)中所獲年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結(jié)論正確的是____.

①存在點,使得平面平面;

②存在點,使得平面;

的面積不可能等于;

④若分別是在平面與平面的正投影的面積,則存在點,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

(1)如果隨機(jī)調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項活動,問2名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1各條棱長均為4,且AA1⊥平面ABC,DAA1的中點,M,N分別在線段BB1和線段CC1上,且B1M3BM,CN3C1N,

1)證明:平面DMN⊥平面BB1C1C;

2)求三棱錐B1DMN的體積.

查看答案和解析>>

同步練習(xí)冊答案