14.已知奇函數(shù)f(x)對(duì)任意x∈R都有f(x+2)=-f(x),當(dāng)x∈(0,1]時(shí),f(x)=2x,則f(2016)-f(2015)的值為2.

分析 根據(jù)條件f(x+2)=-f(x),得到f(x+4)=f(x),從而函數(shù)的周期是4,利用函數(shù)的奇偶性,將條件進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵f(x+2)=-f(x),
∴f(x+4)=f(x),
∴函數(shù)f(x)的周期是4,
∴f(2016)=f(0)=0,f(2015)=f(-1),
∵f(x)是奇函數(shù),x∈(0,1]時(shí),f(x)=2x,
∴f(-1)=-f(1)=-2,
∴f(2016)-f(2015)=0-(-2)=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性和周期性進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某高校在2015年的自主招生考試中隨機(jī)抽取了100名學(xué)生的筆試成績(jī),按成績(jī)分組:第一組[160,165),第二組[165,170),第三組[170,175),第四組[175,180),第五組[180,185)得到的頻率分布直方圖如圖所示
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算出樣本數(shù)據(jù)的眾數(shù)和中位數(shù);(結(jié)果保留1位小數(shù))
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,學(xué)校決定在筆試成績(jī)高的第三、四、五組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第三、四、五組每組各抽取多少名學(xué)生進(jìn)入第二輪面試.
( III)在(Ⅱ)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第四組至少有一名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)求經(jīng)過(guò)A(-1,2)且與直線2x-3y+4=0垂直的直線l的方程;
(2)求經(jīng)過(guò)A(5,2),B(3,-2)且圓心在直線2x-y-3=0上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.二項(xiàng)式${({x^2}+\frac{2}{{\sqrt{x}}})^{10}}$的展開式中的有理項(xiàng)共有(  )
A.4項(xiàng)B.5項(xiàng)C.6項(xiàng)D.7項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=(x+1)lnx,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.雙曲線$\frac{y^2}{3}-{x^2}$=1的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.?dāng)?shù)據(jù)x1,x2,…xn的平均數(shù)為$\overline{x}$,方差為S2,則數(shù)據(jù)3x1-1,3x2-1,…3xn-1的方差是( 。
A.S2B.3S2C.9S2D.9S2-6S+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l1、經(jīng)過(guò)點(diǎn)A(a,a),B(1,0),直線l2經(jīng)過(guò)點(diǎn)C(2a,1),D(-3,a),是否存在實(shí)數(shù)a,使l1∥l2?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.定義在R上的函數(shù)y=f(x)是減函數(shù),且對(duì)任意的a∈R,都有f(-a)+f(a)=0,若x、y滿足不等式f(x2-2x)+f(2y-y2)≤0,則當(dāng)1≤x≤4時(shí),x-3y的最大值為(  )
A.10B.8C.6D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案