19.雙曲線$\frac{y^2}{3}-{x^2}$=1的漸近線方程為y=±$\sqrt{3}$x.

分析 由雙曲線方程與漸近線方程的關(guān)系,只要將雙曲線方程中的“1”換為“0”,化簡整理,可得漸近線方程.

解答 解:由雙曲線方程與漸近線方程的關(guān)系,可得
將雙曲線方程中的“1”換為“0”,
即有$\frac{y^2}{3}-{x^2}$=0,即為y=±$\sqrt{3}$x.
故答案為:y=±$\sqrt{3}$x.

點評 本題考查雙曲線的漸近線方程的求法,注意運用雙曲線方程與漸近線方程的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M和N間的關(guān)系為M∩N=M,那么下列必定成立的是( 。
A.UN∩M=∅B.UM∩N=∅C.UM∩∁UN=∅D.UM∪∁UN=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知全集U={1,2,3,4},集合A={2,3},B={3,4},則(∁UA)∩(∁UB)={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)根據(jù)頻率直方分布圖計算該班50位學(xué)生期中考試數(shù)學(xué)成績的平均數(shù)與中位數(shù)(精確到個位);
(3)從成績不低于80分的學(xué)生中隨機(jī)選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為X,求P(X=1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知奇函數(shù)f(x)對任意x∈R都有f(x+2)=-f(x),當(dāng)x∈(0,1]時,f(x)=2x,則f(2016)-f(2015)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個算法的程序框圖,當(dāng)輸入的x值為1時,輸出y的結(jié)果恰好是$\frac{1}{2}$,則空白框處所填關(guān)系式可以是( 。
A.y=x2B.y=$\frac{1}{x}$C.y=2xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知扇形的圓心角為$\frac{2}{3}π$,半徑為5,則扇形的弧長l等于$\frac{10π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a,b,c為正實數(shù),給出以下結(jié)論:
①若a-2b+3c=0,則$\frac{^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,則a+2b的最小值是4;
③若a(a+b+c)+bc=4,則2a+b+c的最小是2$\sqrt{3}$;
④若a2+b2+c2=4,則ab+bc的最大值是2$\sqrt{2}$.
其中正確結(jié)論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式ax2-(a+2)x+2<0(a∈R).

查看答案和解析>>

同步練習(xí)冊答案