17.設(shè)定點(diǎn)F1(2,0),F(xiàn)2(-2,0),平面內(nèi)一動(dòng)點(diǎn)P滿足條件$|{P{F_1}}|+|{P{F_2}}|=4a+\frac{1}{a}(a>0)$,則點(diǎn)P的軌跡是( 。
A.橢圓B.雙曲線C.線段D.橢圓或線段

分析 由于 4a+$\frac{1}{a}$≥4,當(dāng)4a+$\frac{1}{a}$=4時(shí),滿足|PF1|+|PF2|=|F1 F2|的點(diǎn)P的軌跡是線段F1F2,4a+$\frac{1}{a}$>4時(shí),滿足|PF1|+|PF2|=4a+$\frac{1}{a}$>|F1 F2|的點(diǎn)P的軌跡是橢圓.

解答 解:∵a>0,4a+$\frac{1}{a}$≥4.
故當(dāng)4a+$\frac{1}{a}$=4時(shí),滿足條件|PF1|+|PF2|=4a+$\frac{1}{a}$=|F1 F2|的點(diǎn)P的軌跡是線段F1F2
當(dāng)4a+$\frac{1}{a}$>4時(shí),滿足條件|PF1|+|PF2|=4a+$\frac{1}{a}$(a>0)的點(diǎn)P的軌跡是以F1、F2 為焦點(diǎn)的橢圓.
故選 D.

點(diǎn)評(píng) 本題考查橢圓的定義,基本不等式的應(yīng)用,體現(xiàn)分類討論的數(shù)學(xué)思想,判斷4a+$\frac{1}{a}$≥4是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線$l:\left\{{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}}\right.$(t為參數(shù))恒過橢圓$C:\left\{{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}}\right.$(φ為參數(shù))在右焦點(diǎn)F.
(1)求m的值;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的圖象如圖所示,函數(shù)$f(x)=g(x)+\frac{{\sqrt{3}}}{2}cos2x-\frac{3}{2}sin2x$
(1)如果${x_1},{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{3}]$時(shí),求函數(shù)f(x)的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,若p:a2+b2<c2,q:△ABC是鈍角三角形,則p是q的( 。l件.
A.充分非必要B.必要非充分
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)M為△ABC的重心,則$\overrightarrow{AM}$=( 。
A.$\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$B.$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$C.$\frac{1}{3}(\overrightarrow{AC}-\overrightarrow{AB})$D.$\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}中,a1=2,an+1-an=2n,則數(shù)列的通項(xiàng)an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某初級(jí)中學(xué)領(lǐng)導(dǎo)采用系統(tǒng)抽樣方法,從該校800名學(xué)生中抽50名學(xué)生做牙齒健康檢查.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),求得間隔數(shù)k=16,即每16人抽取一個(gè)人.在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從65~80這16個(gè)數(shù)中應(yīng)取的數(shù)是( 。
A.71B.68C.69D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知Sn為數(shù)列{an}的前n項(xiàng)和,若$Sn=n{a_{n+1}}+{2^n},{a_1}=1$,則數(shù)列$\left\{{\frac{1}{{n({{a_n}-a{\;}_{n+1}})}}}\right\}$的前n項(xiàng)和Tn=$\frac{3}{2}$-$\frac{2}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sinα<0且cosα>0,則α的終邊落在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案