分析 令n=1,可得求得a2=-1,當(dāng)n≥2時(shí),由an=Sn-Sn-1,求得 $\frac{1}{n{(a}_{n}{-a}_{n+1})}$=$\frac{1}{{2}^{n-1}}$,由T1=$\frac{1}{{a}_{1}{-a}_{2}}$=$\frac{1}{2}$,利用等比數(shù)列的求和公式求得Tn的結(jié)果.
解答 解:∵Sn為等差數(shù)列{an}的前n項(xiàng)和,若$Sn=n{a_{n+1}}+{2^n},{a_1}=1$,
令n=1,可得 a1=1=a2+2,求得a2=-1.
當(dāng)n≥2時(shí),an=Sn-Sn-1=nan+1+2n-(n-1)an-2n-1,∴n(an-an+1)=2n-1;
∴$\frac{1}{n{(a}_{n}{-a}_{n+1})}$=$\frac{1}{{2}^{n-1}}$,∴T1=$\frac{1}{{a}_{1}{-a}_{2}}$=$\frac{1}{2}$,
∴數(shù)列$\left\{{\frac{1}{{n({{a_n}-a{\;}_{n+1}})}}}\right\}$的前n項(xiàng)和Tn=$\frac{1}{2}$+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{1}{2}$+$\frac{\frac{1}{2}[1{-(\frac{1}{2})}^{n-1}]}{1-\frac{1}{2}}$=$\frac{3}{2}$-$\frac{2}{{2}^{n}}$,
故答案為:$\frac{3}{2}$-$\frac{2}{{2}^{n}}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 橢圓 | B. | 雙曲線 | C. | 線段 | D. | 橢圓或線段 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12個(gè) | B. | 13個(gè) | C. | 14個(gè) | D. | 15個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | -$\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com