【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.

【答案】
(1)解:2×2列聯(lián)表如下:

休閑 性方 式別

看電視

運動

總計

43

27

70

21

33

54

總計

64

60

124


(2)解:假設(shè)“休閑方式與性別無關(guān)” ,計算 ,

因為 ,所以有理由認為假設(shè)“休閑方式與性別無關(guān)”是不合理的,

即有97.5%的把握認為“休閑方式與性別有關(guān)”.


【解析】(1)根據(jù)題意列表即可;(2)根據(jù)列聯(lián)表計算出k值,查表即可判斷休閑方式與性別有無關(guān)系,及判斷準確性的概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的不等式x2﹣(m+1)x+m<0的解集為A,若集合A中恰好有4個整數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足3a8=5a15 , 且 ,Sn為其前n項和,則數(shù)列{Sn}的最大項為(
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構(gòu)成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體S,從學生群體S中隨機抽取了50名學生進行調(diào)查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如表:

選考物理、化學、生物的科目數(shù)

1

2

3

人數(shù)

5

25

20

(I)從所調(diào)查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學生中任選2名,記X表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量X的分布列和數(shù)學期望;
(III)將頻率視為概率,現(xiàn)從學生群體S中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,則函數(shù)f(3x﹣2)的定義域為( )
A.[ ]
B.[﹣1, ]
C.[﹣3,1]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(x,1), =(4,﹣2).
(Ⅰ)當 時,求| + |;
(Ⅱ)若 所成角為鈍角,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(2+x)=f(x),且在[﹣3,﹣2]上是減函數(shù),若A、B是銳角三角形ABC的兩個內(nèi)角,則下列各式一定成立的是( )
A.f(sinA)<f(cosB)
B.f(sinA)>f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義 為n個正數(shù)p1 , p2 , …,pn的“均倒數(shù)”.若已知正數(shù)數(shù)列{an}的前n項的“均倒數(shù)”為 ,又bn= ,則 + + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 的圓心在直線 上,半徑為 ,且圓 經(jīng)過點
(1)求圓 的標準方程;
(2)求過點 且與圓 相切的切線方程.

查看答案和解析>>

同步練習冊答案