【題目】已知關于x的不等式x2﹣(m+1)x+m<0的解集為A,若集合A中恰好有4個整數,則實數m的取值范圍是 .
【答案】[﹣4,﹣3)∪(5,6]
【解析】解:關于x的不等式x2﹣(m+1)x+m<0化為:(x﹣m)(x﹣1)<0,①m=1時,不等式的解集為,舍去.②m<1時,不等式的解集A=(m,1),∵集合A中恰好有4個整數,∴﹣4≤m<﹣3.
則實數m的取值范圍是[﹣4,﹣3).③m>1時,不等式的解集A=(1,m),∵集合A中恰好有4個整數,∴5<m≤6.
則實數m的取值范圍是(5,6].
綜上可得:實數m的取值范圍是[﹣4,﹣3)∪(5,6].
所以答案是:[﹣4,﹣3)∪(5,6].
【考點精析】解答此題的關鍵在于理解解一元二次不等式的相關知識,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊.
科目:高中數學 來源: 題型:
【題目】已知兩點F1(﹣2,0),F2(2,0),且|F1F2|是|PF1|與|PF2|的等差中項,則動點P的軌跡方程是( )
A. + =1
B. + =1
C. + =1
D. + =1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數f(x)為“可等域函數”,區(qū)間A為函數f(x)的一個“可等域區(qū)間”.給出下列四個函數: ①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|
其中存在“可等域區(qū)間”的“可等域函數”為( )
A.①
B.②
C.①②
D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直角梯形ABCD與等邊△ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=AD=2,F為線段EA上的點,且EA=3EF.
(I)求證:EC∥平面FBD
(Ⅱ)求多面體EFBCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}(n∈N*)是首項為20的等差數列,其公差d≠0,且a1 , a4 , a5成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{an}的前n項和為Sn , 當Sn>0時,求n的最大值;
(Ⅲ)設bn=5﹣ ,求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2+(2﹣m)x﹣m,g(x)=x2﹣x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關于x的不等式f(x)≤g(x)的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據以上數據建立一個2×2列聯表;
(2)判斷性別與休閑方式是否有關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com