【題目】已知橢圓的長軸長是短軸長的倍,且過點.
(1)求橢圓的標準方程;
(2)若的頂點、在橢圓上, 所在的直線斜率為, 所在的直線斜率為,若,求的最大值.
【答案】(1);(2)2.
【解析】試題分析:(1)根據(jù)橢圓長軸與短軸的關系列出一個方程,再根據(jù)橢圓過已知點列出一個方程,解方程組求出a,b,寫出橢圓的標準方程;(2)由于OA和OB的斜率乘積為定值,因此OA的斜率為,則OB的斜率可表示為,分別把射線OA、OB的方程與橢圓的方程聯(lián)立,求出A、B兩點的橫坐標,得出兩點的橫坐標的積,根據(jù)OA、OB方程得出A、B兩點的縱坐標的積,從表示出數(shù)量積,再利用基本不等式求出最值.
試題解析:
(1)由題意得解得
∴橢圓的標準方程為.
(2)設, ,不妨設, .
由,∴(),
直線、的方程分別為, ,
聯(lián)立
解得, .
∵ ,
當且僅當時,等號成立.
所以的最大值為2.
科目:高中數(shù)學 來源: 題型:
【題目】【2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考】已知橢圓: 的左頂點為,上頂點為,直線與直線垂直,垂足為點,且點是線段的中點.
(I)求橢圓的方程;
(II)如圖,若直線: 與橢圓交于, 兩點,點在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據(jù)題意可得, 故斜率為,由直線與直線垂直,可得,因為點是線段的中點,∴點的坐標是,
代入直線得,連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設, , ,∴ ,得,將點坐標代入橢圓方程得,
點到直線的距離為,利用弦長公式得EF,則平行四邊形的面積為
.
解析:(1)由題意知,橢圓的左頂點,上頂點,直線的斜率,
得,
因為點是線段的中點,∴點的坐標是,
由點在直線上,∴,且,
解得, ,
∴橢圓的方程為.
(2)設, , ,
將代入消去并整理得 ,
則, ,
,
∵四邊形為平行四邊形,∴ ,
得,將點坐標代入橢圓方程得,
點到直線的距離為, ,
∴平行四邊形的面積為
.
故平行四邊形的面積為定值.
【題型】解答題
【結束】
21
【題目】已知函數(shù), .
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,求證:函數(shù)有兩個不相等的零點, ,且.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點,求;
(2)設圓與軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,試證明直線恒過一定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數(shù)據(jù)模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學生進入30秒跳繩決賽
(B)5號學生進入30秒跳繩決賽
(C)8號學生進入30秒跳繩決賽
(D)9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程=x+必過(,);
④在一個2×2列聯(lián)表中,由計算得K2=13.079,則有99%以上的把握認為這兩個變量間有關系.
其中錯誤的個數(shù)是( )
本題可以參考獨立性檢驗臨界值表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com