13.?dāng)?shù)列1,4,9,16,25…的一個(gè)通項(xiàng)公式為an=n2

分析 通過數(shù)列的項(xiàng)與序號(hào)之間的關(guān)系,寫出數(shù)列的通項(xiàng)公式即可.

解答 解:數(shù)列1,4,9,16,25…數(shù)列的項(xiàng)與序號(hào)之間滿足平方關(guān)系,設(shè)數(shù)列1,4,9,16,25,…,為{an},則an=n2
故答案為:an=n2

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,考查觀察問題解決問題的能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.?dāng)?shù)據(jù)x1,x2,…,x8平均數(shù)為6,標(biāo)準(zhǔn)差為2,則數(shù)據(jù)2x1-6,2x2-6,…,2x8-6的方差為(  )
A.16B.4C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,$\overrightarrow{AB}$=(cos$\frac{3x}{2}$,-sin$\frac{3x}{2}$),$\overrightarrow{AC}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),其中x∈[$\frac{π}{6}$,$\frac{π}{3}$].
(I)若x=$\frac{π}{6}$,求|$\overrightarrow{BC}$|;
(II)記△ABC的邊BC上的高為h,若函數(shù)f(x)=|$\overrightarrow{BC}$|2+λ•h的最大值是5,求常數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1,2sinx),$\overrightarrow$=(1,cosx-sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow$
(1)求函數(shù)f(x)最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),若方程|f(x)|=m有兩個(gè)不等的實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.運(yùn)行如圖所示的程序框圖,若輸入x=2,則輸出y的值為(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所對(duì)的邊分別為a、b、c.求
(1)求角A的大;
(2)若$a=\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求sinB+sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,某市園林局準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC以外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余的地方種花.若BC=a(a為定值),∠ABC=α,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2;
(1)用a,α表示S1,S2
(2)當(dāng)α為何值時(shí),$\frac{{s}_{2}}{{s}_{1}}$取得最大值,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,則不同的安排種數(shù)為(  )
A.1440B.3600C.5040D.5400

查看答案和解析>>

同步練習(xí)冊(cè)答案