11.記P(x,y)坐標(biāo)滿(mǎn)足不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$,則|x+3y-5|的取值范圍[0,7].

分析 由約束條件作出可行域,令z=x+3y-5,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出z=x+3y-5得最值,則|x+3y-5|的取值范圍可求.

解答 解:由約束條件$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$作差可行域如圖,

令z=x+3y-5,化為$y=-\frac{x}{3}+\frac{z+5}{3}$,
由圖可知,當(dāng)直線$y=-\frac{x}{3}+\frac{z+5}{3}$分別過(guò)A(-2,0),B(0,2)時(shí),目標(biāo)函數(shù)z=x+3y-5取得最小值和最大值,
分別為:-7,1.
∴|x+3y-5|的取值范圍是[0,7].
故答案為:[0,7].

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,bn>0恒成立,若a2=b2且a8=b8,則( 。
A.a5≥b5B.a5≤b5C.a5>b5D.a5<b5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在數(shù)列{an}中,a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{2}$.
(1)若bn=$\frac{{a}_{n}}{n}$,求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若在定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱(chēng)函數(shù)f(x)是“可拆函數(shù)”.
(1)函數(shù)f(x)=$\frac{k}{x}$是否是“可拆函數(shù)”?請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)=2x+b+2x是“可拆函數(shù)”,求實(shí)數(shù)b的取值范圍:
(3)證明:f(x)=cosx是“可拆函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定點(diǎn)P(a,b)在圓x2+y2+2x=1內(nèi),直線(a+1)x+by+a-1=0與圓x2+y2+2x=1的位置關(guān)系是( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,Q為右支上一點(diǎn),P點(diǎn)在直線x=-a上,且滿(mǎn)足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{2}}$,$\overrightarrow{OQ}$=λ($\frac{\overrightarrow{O{F}_{2}}}{|\overrightarrow{O{F}_{2}}|}$+$\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|}$)(λ≠0),則該雙曲線的離心率為( 。
A.$\sqrt{5}$+1B.$\sqrt{2}$+1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.觀察規(guī)律猜想下列數(shù)列的通項(xiàng)公式:
(1)1,-2,4,-8,16,…
(2)1,4,2,8,3,12,4,16,5,20,…
(3)-$\frac{2}{3}$,$\frac{4}{15}$,-$\frac{8}{35}$,$\frac{16}{63}$,…

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$lg(kx),g(x)=lg(x+1).
(1)求f(x)-g(x)的定義域.
(2)若方程f(x)=g(x)有且僅有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R).
(1)若對(duì)任意實(shí)數(shù)x,不等式2x≤f(x)≤$\frac{1}{2}$(x+1)2恒成立,求f(-1)的取值范圍;
(2)當(dāng)a=1時(shí),對(duì)任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案