A. | (-∞,$\frac{\sqrt{2}}{2}$) | B. | (-∞,$\sqrt{2}$) | C. | (-∞,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,$\frac{9}{4}$) |
分析 由題意知f(x)-m>0對一切x∈($\frac{1}{2}$,2)恒成立,可轉(zhuǎn)化為:m<x+$\frac{1}{2x}$ 在($\frac{1}{2}$,2)上恒成立.
解答 解:∵f(x)-m>0 即 f(x)>m⇒m<x+$\frac{1}{2x}$;
令h(x)=x+$\frac{1}{2x}$
h'(x)=1-$\frac{1}{2}$•$\frac{1}{{x}^{2}}$,令h'(x)=0⇒x=±$\frac{\sqrt{2}}{2}$ (負舍);
所以,h(x)在($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)上單調(diào)遞減,($\frac{\sqrt{2}}{2}$,2)上單調(diào)遞增;
∴h(x)min=$\sqrt{2}$;
所以,m的取值范圍為(-∞,$\sqrt{2}$);
故選:B
點評 本題主要考察了對勾函數(shù)、利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性以及函數(shù)恒成立問題,屬中等題.
科目:選擇題
來源: 題型:A. | (1,2) | B. | (1,3] | C. | (1,$\frac{3}{2}$) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{19}{8}$) | B. | (2,3) | C. | (2,$\frac{19}{8}$] | D. | (2,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com