【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,
(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
【答案】(I)見解析;(II)見解析;(III).
【解析】
(I)連接,結(jié)合平行四邊形的性質(zhì),以及三角形中位線的性質(zhì),得到,利用線面平行的判定定理證得結(jié)果;
(II)取棱的中點(diǎn),連接,依題意,得,結(jié)合面面垂直的性質(zhì)以及線面垂直的性質(zhì)得到,利用線面垂直的判定定理證得結(jié)果;
(III)利用線面角的平面角的定義得到為直線與平面所成的角,放在直角三角形中求得結(jié)果.
(I)證明:連接,易知,,
又由,故,
又因?yàn)?/span>平面,平面,
所以平面.
(II)證明:取棱的中點(diǎn),連接,依題意,得,
又因?yàn)槠矫?/span>平面,平面平面,
所以平面,又平面,故,
又已知,,
所以平面.
(III)解:連接,由(II)中平面,
可知為直線與平面所成的角.
因?yàn)?/span>為等邊三角形,且為的中點(diǎn),
所以,又,
在中,,
所以,直線與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.
其中每一級過濾都由核心部件濾芯來實(shí)現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨(dú)立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨(dú)購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.
表1:一級濾芯更換頻數(shù)分布表
一級濾芯更換的個數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級濾芯更換頻數(shù)條形圖
以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為16的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的二級濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上任意一點(diǎn)向軸作垂線段垂足為,點(diǎn)是線段上的一點(diǎn),且滿足.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)直線與軌跡交于兩點(diǎn),點(diǎn)為軌跡上異于的任意一點(diǎn),直線分別與直線交于兩點(diǎn).問:軸正半軸上是否存在定點(diǎn)使得以為直徑的圓過該定點(diǎn)?若存在,求出符合條件的定點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形的邊長為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).
(1)證明:MN∥平面C1DE;
(2)求點(diǎn)C到平面C1DE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱臺中,點(diǎn)在上,且,點(diǎn)是內(nèi)(含邊界)的一個動點(diǎn),且有平面平面,則動點(diǎn)的軌跡是( )
A. 平面B. 直線C. 線段,但只含1個端點(diǎn)D. 圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐S-ABC中,∠ABC=90°,D是AC的中點(diǎn),且SA=SB=SC.
(1)求證:SD⊥平面ABC;
(2)若AB=BC,求證:BD⊥平面SAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(n∈N*)
(Ⅰ)證明當(dāng)n≥2時,數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn;
(Ⅲ)對任意n∈N*,使得 恒成立,求實(shí)數(shù)λ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com