1.過(guò)拋物線的頂點(diǎn)任作互相垂直的兩條弦,交拋物線于兩點(diǎn),求證:這兩點(diǎn)所連線段中點(diǎn)的軌跡是拋物線.

分析 先設(shè)A(x1,y1)、B(x2,y2)及中點(diǎn)P的坐標(biāo),根據(jù)中點(diǎn)的定義得到三點(diǎn)坐標(biāo)之間的關(guān)系,再由OA⊥OB得到1x2+y1y2=0,結(jié)合A、B兩點(diǎn)在拋物線上滿足拋物線方程可得到y(tǒng)1y2、y12+y22的關(guān)系消去x1、y1、x2、y2可得到最后答案.

解答 證明:不妨設(shè)拋物線y2=2px(p>0),設(shè)A、B兩點(diǎn)坐標(biāo)為(x1,y1)、(x2,y2),AB中點(diǎn)P坐標(biāo)為(x0,y0),則x1+x2=2x0,y1+y2=2y0
由OA⊥OB得x1x2+y1y2=0.
∴(y1y22=4p2x1x2=-4p2y1y2
∴y1y2=-4p2
∵y12+y22=2p(x1+x2
∴(y1+y22-2y1y2=2p(x1+x2
∴4y02+8p2=4px0
即y02=px0-2p2
∴中點(diǎn)軌跡方程為:y2=px-2p2
∴這兩點(diǎn)所連線段中點(diǎn)的軌跡是拋物線.

點(diǎn)評(píng) 本題主要考查直線和拋物線的綜合問(wèn)題,考查軌跡方程,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),若點(diǎn)F2關(guān)于直線y=$\frac{a}$x的對(duì)稱點(diǎn)M也在雙曲線上,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用更相減損術(shù)求得81與135的最大公約數(shù)是( 。
A.54B.27C.9D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,一個(gè)小球做簡(jiǎn)諧運(yùn)動(dòng),當(dāng)時(shí)間t=0s時(shí),小球在平衡位置,當(dāng)t=1s時(shí),小球第一次達(dá)到偏離平衡位置最大距離,這時(shí)小球離開(kāi)平衡位置2cm,若該簡(jiǎn)諧運(yùn)動(dòng)的解析式為y=Asin(ωt+φ),則A,ω,φ的值分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知拋物線C:y2=2px(p>0)的焦點(diǎn)是F,點(diǎn)D(1,y0)是拋物線C上的點(diǎn),且|DF|=3.
(1)若直線l經(jīng)過(guò)點(diǎn)F交拋物線C于A、B兩點(diǎn),當(dāng)$\overrightarrow{AF}$=4$\overrightarrow{FB}$時(shí),求直線l的方程;
(2)已知點(diǎn)M(m,0)(m>0),過(guò)點(diǎn)M作直線l1交拋物線C于P、Q兩點(diǎn),G是線段PQ的中點(diǎn),過(guò)點(diǎn)M作與直線l1垂直的直線l2交拋物線C于S、T兩點(diǎn),H是線段ST的中點(diǎn)(如圖所示),求△MGH面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某賽季甲乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的原始記錄如下:
甲運(yùn)動(dòng)員得分:30,27,9,14,33,25,21,12,36,23,
乙運(yùn)動(dòng)員得分:49,24,12,31,50,31,44,36,15,37,25,36,39
(1)根據(jù)兩組數(shù)據(jù)完成甲乙運(yùn)動(dòng)員得分的莖葉圖,并通過(guò)莖葉圖比較兩名運(yùn)動(dòng)員成績(jī)的平均值及穩(wěn)定程度;(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可)
(2)若從甲運(yùn)動(dòng)員的十次比賽的得分中選出2個(gè)得分,記選出的得分超過(guò)23分的個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a2+b2+$\sqrt{2}$ab=c2,則C=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.證明二項(xiàng)式定理(a+b)n=Cn0an+Cn1an-1b+Cn2an-2b2+…+Cnran-rbr+…+Cnnbn,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.用秦九韶算法求函數(shù)f(x)=3x5-2x4+2x3-4x2-7當(dāng)x=2的值時(shí),v3的結(jié)果是(  )
A.4B.10C.16D.33

查看答案和解析>>

同步練習(xí)冊(cè)答案