5.已知曲線y=$\frac{{x}^{2}}{4}$-lnx的一條切線的斜率為-$\frac{1}{2}$,則切點的坐標為$({1,\frac{1}{4}})$.

分析 求出原函數(shù)的導函數(shù),設(shè)出斜率為-$\frac{1}{2}$的切線的切點為(x0,y0),(x0>0)由函數(shù)在x=x0時的導數(shù)等于-$\frac{1}{2}$求出x0的值,舍掉定義域外的x0得答案.

解答 解:由y=$\frac{{x}^{2}}{4}$-lnx得y′=$\frac{1}{2}x-\frac{1}{x}$.
設(shè)斜率為-$\frac{1}{2}$的切線的切點為(x0,y0),(x0>0)
則$\frac{1}{2}{x}_{0}-\frac{1}{{x}_{0}}=-\frac{1}{2}$,
解得:x0=1,
∴y0=$\frac{1}{4}$.
故答案為$({1,\frac{1}{4}})$.

點評 考查了利用導數(shù)求曲線上過某點切線方程的斜率,考查了基本初等函數(shù)的導數(shù)公式,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.直線(m+2)x+my+1=0與直線(m-1)x+(m-4)y+2=0互相垂直,則m 的值為( 。
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.(理)如圖在四面體OABC中,OA,OB,OC兩兩垂直,且OB=OC=3,OA=4,給出如下判斷:
①存在點D(O點除外),使得四面體DABC有三個面是直角三角形;
②存在點D,使得點O在四面體DABC外接球的球面上;
③存在唯一的點D使得OD⊥平面ABC;
④存在點D,使得四面體DABC是正棱錐;
⑤存在無數(shù)個點D,使得AD與BC垂直且相等.
其中正確命題的序號是①②④⑤(把你認為正確命題的序號填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow a$和$\overrightarrow b$的夾角為60°,且$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,
(1)求$|{\overrightarrow{2a}-\overrightarrow b}|$;
(2)若向量$\overrightarrow a+\overrightarrow b$和向量$\overrightarrow a+k\overrightarrow b$垂直,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x-y的最小值為(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$ax3-bex(a∈R,b∈R),且f(x)在x=0處的切線與x-y+3=0垂直.
(1)若函數(shù)f(x)在[$\frac{1}{2}$,1]存在單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(2)若f′(x)有兩個極值點x1,x2,且x1<x2,求a的取值范圍;
(3)在第二問的前提下,證明:-$\frac{e}{2}$<f′(x1)<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在三棱錐A-BCD中,O、E分別為BD、BC中點,CA=CB=CD=BD=4,AB=AD=2$\sqrt{2}$
(1)求證:AO⊥面BCD
(2)求異面直線AB與CD所成角的余弦值
(3)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知直線l1:y=2x,l2:y=-2x,過點M(-2,0)的直線l分別與直線l1,l2交于A,B,其中點A在第三象限,點B在第二象限,點N(1,0);
(1)若△NAB的面積為16,求直線l的方程;
(2)直線AN交l2于點P,直線BN交l1于點Q,若直線l、PQ的斜率均存在,分別設(shè)為k1,k2,判斷$\frac{k_1}{k_2}$是否為定值?若為定值,求出該定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)集合A={x|x2-x-2>0},B={x||x|<3},則A∩B=(  )
A.{x|-3<x<-1}B.{x|2<x<3}C.{x|-3<x<-1或2<x<3}D.{x|-3<x<-2或1<x<3}

查看答案和解析>>

同步練習冊答案