分析 (Ⅰ)由A的坐標(biāo),利用任意角的三角函數(shù)定義求出sinα與cosα的值,原式利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值;
(Ⅱ)由三角形AOB為等邊三角形,得到∠AOB=60°,表示出∠COB,利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值.
解答 解:(Ⅰ)∵A的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$),
∴根據(jù)三角函數(shù)的定義可知,sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,
∴$\frac{1+sin2α}{1+cos2α}$=$\frac{1+2sinαcosα}{2co{s}^{2}α}$=$\frac{49}{18}$;
(Ⅱ)∵△AOB為正三角形,
∴∠AOB=60°,
∵∠COA=α,
∴cos∠COB=cos(α+60°)=cosαcos60°-sinαsin60°=$\frac{3}{5}$×$\frac{1}{2}$-$\frac{4}{5}$×$\frac{\sqrt{3}}{2}$=$\frac{3-4\sqrt{3}}{10}$.
點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -5 | B. | -1 | C. | 1 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充要條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2π | B. | 函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上單調(diào)遞增 | ||
C. | 函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱 | D. | 點(diǎn)(π,0)是函數(shù)f(x)的一個(gè)對(duì)稱中心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com