分析 根據(jù)函數(shù)奇偶性的性質(zhì),構(gòu)造函數(shù)f(x-1008.5),判斷函數(shù)的奇偶性,結(jié)合函數(shù)圖象的變化關(guān)系進(jìn)行求解即可.
解答 解:∵f(x)=$\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$+…+$\frac{1}{x+2016}$,
∴f(x-1008.5)=$\frac{1}{x-1007.5}$+$\frac{1}{x-1006.5}$+…+$\frac{1}{x+1007.5}$,
設(shè)g(x)=f(x-1008.5)=$\frac{1}{x-1007.5}$+$\frac{1}{x-1006.5}$+…+$\frac{1}{x+1007.5}$,
則g(-x)=-($\frac{1}{x-1007.5}$+$\frac{1}{x-1006.5}$+…+$\frac{1}{x+1007.5}$)=-g(x),
即g(x)是奇函數(shù),
則g(x)關(guān)于原點(diǎn)對(duì)稱(chēng),
則f(x)=g(x+1008.5),
則將g(x)沿著x軸,向左平移1008.5個(gè)單位,此時(shí)函數(shù)為f(x),圖象關(guān)于(-1008.5,0)對(duì)稱(chēng),
故函數(shù)f(x)的對(duì)稱(chēng)中心為(-1008.5,0).
故答案為:(-1008.5,0).
點(diǎn)評(píng) 本題主要考查函數(shù)對(duì)稱(chēng)中心的求解,利用函數(shù)奇偶性的性質(zhì),構(gòu)造一個(gè)奇函數(shù)是解決本題的關(guān)鍵,綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -e | B. | $-\frac{1}{e}$ | C. | $\frac{1}{e}$ | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | $2\sqrt{6}$ | C. | $4\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | $-\frac{1}{7}$ | C. | -7 | D. | -7或$-\frac{1}{7}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com