精英家教網 > 高中數學 > 題目詳情

某公園內有一橢圓形景觀水池,經測量知,橢圓長軸長為20米,短軸長為16米,現以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標系,如圖所示:

(1)為增加景觀效果,擬在水池內選定兩點安裝水霧噴射口,要求橢圓上各點到這兩點距離之和都相等,請指出水霧噴射口的位置(用坐標表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個以橢圓的長軸頂點A、短軸頂點B及橢圓上某點M構成的三角形區(qū)域進行夜景燈光布置,請確定點M的位置,使此三角形區(qū)域面積最大。

(1)橢圓的方程為            4分
(2)當選擇在點,)安裝景觀燈時,三角形區(qū)域面積最大  

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題12分)橢圓:的兩個焦點為,點在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓兩點,且關于點對稱,求直線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分15分 )已知橢圓經過點,一個焦點是
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓軸的兩個交點為、,點在直線上,直線分別與橢圓交于、兩點.試問:當點在直線上運動時,直線是否恒經過定點?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線3x2-y2=3,過點P(2,1)作一直線交雙曲線于A、B兩點,若P為
AB的中點,
(1)求直線AB的方程;
(2)求弦AB的長

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)離心率為的橢圓的左、右焦點分別為、,是坐標原點.
(1)求橢圓的方程;
(2)若直線交于相異兩點、,且,求.(其中是坐標原點)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題10分)選修4—4:坐標系與參數方程設橢圓的普通方程為
(1)設為參數,求橢圓的參數方程;
(2)點是橢圓上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,是拋物線的焦點,是拋物線上位于第一象限內的任意一點,過三點的圓的圓心為,點到拋物線的準線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點,使得直線與拋物線相切于點若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點軸上,且焦距為,實軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點,使得為鈍角?若存在,求出點的橫坐標的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線C:,為拋物線上一點關于軸對稱的點,為坐標原點.
(1)若,求點的坐標;
(2)若過滿足(1)中的點作直線交拋物線兩點, 且斜率分別為,且,求證:直線過定點,并求出該定點坐標

查看答案和解析>>

同步練習冊答案