已知橢圓的中心在原點,焦點軸上,且焦距為,實軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點,使得為鈍角?若存在,求出點的橫坐標(biāo)的取值范圍;若不存在,請說明理由.

(Ⅰ)設(shè)橢圓方程為:,依題意得:a =" 2" ,c = ,所以b = 1
所以橢圓方程為    ……………5分
(Ⅱ)假設(shè)存在,設(shè)(x,y).則因為為鈍角,所以
,
又因為點在橢圓上,所以
聯(lián)立兩式得:化簡得:
解得:,所以存在。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分) 如圖,已知拋物線與坐標(biāo)軸分別交于A、B、C三點,過坐標(biāo)原點O的直線與拋物線交于M、N兩點.分別過點C、D作平行于軸的直線、.(1)求拋物線對應(yīng)的二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線相切;
(3)求線段MN的長(用表示),并證明M、N兩
點到直線的距離之和等于線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公園內(nèi)有一橢圓形景觀水池,經(jīng)測量知,橢圓長軸長為20米,短軸長為16米,現(xiàn)以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標(biāo)系,如圖所示:

(1)為增加景觀效果,擬在水池內(nèi)選定兩點安裝水霧噴射口,要求橢圓上各點到這兩點距離之和都相等,請指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個以橢圓的長軸頂點A、短軸頂點B及橢圓上某點M構(gòu)成的三角形區(qū)域進行夜景燈光布置,請確定點M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點關(guān)于軸的對稱點為,直線過點交拋物線于兩點.
(1)證明:直線的斜率互為相反數(shù); 
(2)求面積的最小值;
(3)當(dāng)點的坐標(biāo)為,.根據(jù)(1)(2)推測并回答下列問題(不必說明理由):①直線的斜率是否互為相反數(shù)? ②面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓C于A、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T。若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,曲線C1是以原點O為中心,F(xiàn)1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F(xiàn)2為焦點的拋物線的一部分,是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;   
(2)求點的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)如圖,設(shè)拋物線的準(zhǔn)線與x軸交于點,
焦點為為焦點,離心率為的橢圓與拋物線在x軸上方的交點為P
,延長交拋物線于點Q,M是拋物線上一動點,且M在P與Q之間運動。
1)當(dāng)m=3時,求橢圓的標(biāo)準(zhǔn)方程;
2)若且P點橫坐標(biāo)為,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心是坐標(biāo)原點,焦點在坐標(biāo)軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案