18.已知圓O:x2+y2=4,直線l:x+y-4=0,A為直線l上一點(diǎn),若圓O上存在兩點(diǎn)B、C,使得∠BAC=60°,則點(diǎn)A的橫坐標(biāo)的取值范圍是[0,4].

分析 先確定從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時才是最大的角,進(jìn)而求出OA的長度為4,故可轉(zhuǎn)化為在直線上找到一點(diǎn),使它到點(diǎn)O的距離為4.

解答 解:由題意,從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時才是最大的角,不妨設(shè)切線為AP,AQ,則∠PAQ為60°時,∠POQ為120°,所以O(shè)A的長度為4,
故問題轉(zhuǎn)化為在直線上找到一點(diǎn),使它到點(diǎn)O的距離為4.
設(shè)A(x0,4-x0),則∵O(0,0),∴x02+(4-x02=16
∴x0=0或4
∴滿足條件的點(diǎn)A橫坐標(biāo)的取值范圍是[0,4].
故答案為:[0,4].

點(diǎn)評 本題考查直線與圓的方程的應(yīng)用,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是明確從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時才是最大的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在正方體中,E、F為所在棱的中點(diǎn),求證:D1、E、F、B四點(diǎn)共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{a}$+$\overrightarrow$=(2,-8),$\overrightarrow{a}$-$\overrightarrow$=(-8,16),求$\overrightarrow{a}$•$\overrightarrow$和cos<$\overrightarrow{a}$•$\overrightarrow$>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知D,E,F(xiàn)分別是△ABC三邊AB,BC,CA的中點(diǎn),則下列等式不成立的是( 。
A.$\overrightarrow{FD}$+$\overrightarrow{DA}$=$\overrightarrow{FA}$B.$\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{EF}$=0C.$\overrightarrow{DE}$+$\overrightarrow{DA}$=$\overrightarrow{EC}$D.$\overrightarrow{DA}$+$\overrightarrow{DE}$=$\overrightarrow{DF}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=sinxcos(x+$\frac{π}{6}$)的最小值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸的正半軸上,若拋物線上一動點(diǎn)P到A(2,$\frac{3}{2}$),F(xiàn)兩點(diǎn)的距離之和的最小值為4,求拋物線C的方程及其準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=5,則|$\overrightarrow{a}$+$\overrightarrow$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列四個命題:①若a∥b,a∥α,則b∥α;②若a∥α,b?α,則α∥b;③若a∥α,則a平行于α內(nèi)所有的直線;④若a∥α,a∥b,b?α,則b∥α.其中正確命題的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若一個三棱柱的三視圖如圖所示,主視圖與左視圖均為矩形,俯視圖為正三角形,求這個三棱柱的底面邊長與高.

查看答案和解析>>

同步練習(xí)冊答案