等比數(shù)列{an}的首項a1=-1,前n項和為Sn
S 10
S 5
=
31
32
,則公比q等于( 。
A、
1
2
B、-
1
2
C、2
D、-2
考點:等比數(shù)列的性質(zhì)
專題:計算題
分析:利用數(shù)列前n項和的定義及等比數(shù)列通項公式 得出
S10
S5
=1+q5=
31
32
,解出q即可.
解答: 解:∵{an}是等比數(shù)列,由數(shù)列前n項和的定義及等比數(shù)列通項公式得,
S10=(a1+a2+…a5)+(a6+a7+…+a10)=S5+q5(a1+a2+…a5)=(1+q5)S5,
S10
S5
=1+q5=
31
32
,
解得q=-
1
2
,
故選:B.
點評:本題主要考查等比數(shù)列前n項和的計算、通項公式.利用數(shù)列前n項和定義避免了在轉(zhuǎn)化
S10
S5
時對公比q是否為1的討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,記為數(shù)列{an},可以推測數(shù)列{an}的通項公式:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(Ⅰ)求f(x)的最大值;
(Ⅱ)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:(x-2)(x+m)≤0,q:x2+(1-m)x-m≤0.
(1)若m=3,命題“p且q”為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+ai(a∈R)(i是虛數(shù)單位)在復(fù)平面上表示的點在第四象限,且|z|=
5
,則a=( 。
A、2
B、-2
C、
2
D、-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x+1|+|2x+a|的最小值為3,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一正整數(shù)的數(shù)陣如圖所示(從上至下第1行是1,第二行是3,、2,…),則自上而下,第100行第2個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入的P是10,則輸出的結(jié)果S的值為(  )
A、1-
1
29
B、1-
1
211
C、1-
1
210
D、10-
20
210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計一個算法,判斷正整數(shù)m是否是正整數(shù)n的約數(shù).

查看答案和解析>>

同步練習(xí)冊答案