給出平面區(qū)域如圖所示,若使目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個,則a的值為(  )
A、
1
4
B、
3
5
C、4
D、
2
5
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由題設(shè)條件,目標(biāo)函數(shù)z=ax+y (a>0),取得最大值的最優(yōu)解有無數(shù)個知取得最優(yōu)解必在邊界上而不是在頂點上,目標(biāo)函數(shù)中兩個系數(shù)皆為正,故最大值應(yīng)在左上方邊界AC上取到,即ax+y=0應(yīng)與直線AC平行,進(jìn)而計算可得答案.
解答: 解:由題意,最優(yōu)解應(yīng)在線段AC上取到,
故ax+y=0應(yīng)與直線AC平行
∵kAC=
22
5
-2
1-5
=-
3
5
,
∴-a=-
3
5
,
∴a=
3
5
,
故選:B
點評:本題考查線性規(guī)劃最優(yōu)解的判定,屬于該知識的逆用題型,知最優(yōu)解的特征,判斷出最優(yōu)解的位置求參數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量X的分布列如下表,且E(X)=1.1,則D(X)=
 

X 0 1 x
P
1
5
p
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是方程x2+(cotθ)x-cosθ=0的兩個不等實根,那么過點A(a,a2)和B(b,b2)的直線與圓x2+y2=1的位置關(guān)系是( 。
A、相離B、相切
C、相交D、隨θ的值而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M是滿足下列性質(zhì)函數(shù)的f(x)的全體,在定義域D內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=
1
x
,g(x)=x2是否屬于集合M?分別說明理由.
(2)若函數(shù)f(x)=lg
a
x2+1
屬于集合M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=
3
4
,α是第三象限的角,則
1-tan
α
2
1+tan
α
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對任意a,b∈R都有f(a+b)=f(a)+f(b)-1,當(dāng)x>0時,f(x)>1.
(1)求證:f(x)在R上是增函數(shù).
(2)若f(4)=5,解不等式f(3m-4)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線
3
x-y+2m=0
與圓x2+y2=n2相切,其中m,n∈N*,且n-m<5,則滿足條件的有序?qū)崝?shù)對(m,n)共有的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)的坐標(biāo)x,y滿足
x-
3
y+2≥0
3
x-y≤0
y≥0
,則x2+y2-4x的取值范圍是(  )
A、[0,12]
B、[-1,12]
C、[3,16]
D、[-1,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x+b與曲線y=-x+3lnx相切,則b的值為
 

查看答案和解析>>

同步練習(xí)冊答案