已知直線
3
x-y+2m=0
與圓x2+y2=n2相切,其中m,n∈N*,且n-m<5,則滿足條件的有序?qū)崝?shù)對(duì)(m,n)共有的個(gè)數(shù)為( 。
A、1B、2C、3D、4
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:由直線和圓相切的性質(zhì)可得,圓心到直線的距離等于半徑,化簡(jiǎn)可得 2m=2n,再結(jié)合n-m<5,m,n∈N*,可得結(jié)論.
解答: 解:∵直線
3
x-y+2m=0
與圓x2+y2=n2相切,
2m
2
=n
,
∴2m=2n,
∵n-m<5,m,n∈N*,
∴m=1,2,3,4時(shí),滿足條件.
滿足條件的有序?qū)崝?shù)對(duì)(m,n)有:(1,1)(2,2),(3,4),(4,8),
故選D.
點(diǎn)評(píng):本題考直線和圓的位置關(guān)系,考查點(diǎn)到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}時(shí)公差不為零的等差數(shù)列,a1=1,a1,a3,a9成等比數(shù)列,則數(shù)列{an2an}的前n項(xiàng)和sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+2),且f(1)=0,則f(x)在區(qū)間(0,5]上具有零點(diǎn)的最少個(gè)數(shù)是( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出平面區(qū)域如圖所示,若使目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個(gè),則a的值為( 。
A、
1
4
B、
3
5
C、4
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=2,計(jì)算:
sinα
sinα-cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

舒城某運(yùn)輸公司接受了向我縣偏遠(yuǎn)地區(qū)每天送至少180t生活物資的任務(wù).該公司有8輛載重6t的A型卡車與4輛載重為10 t的B型卡車,有10名駕駛員,每輛卡車每天往返的次數(shù)為A型卡車4次,B型卡車3次;每輛卡車每天往返的成本費(fèi)A型為320元,B型為504元.請(qǐng)為公司安排一下,應(yīng)如何調(diào)配車輛,才能使公司所花的成本費(fèi)最低?若只安排A型或B型卡車,所花的成本費(fèi)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足線性約束條件
x-y+2≥0
2x+y-5≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=abx+y(a>0,b>0)的最大值為6,則a+b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知S2=30,S4=150,則a5+a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=1.圓的參數(shù)方程為
x=1+rcosθ
y=1+rsinθ
(θ為參數(shù),r>0),若直線l與圓C相切,求r的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案