A. | x-y+2=0 | B. | 3x-y+2=0 | C. | x-3y-2=0 | D. | 3x-y-2=0 |
分析 欲求曲線y=2x2-x在點(1,1)處的切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答 解:∵y=f(x)=2x2-x,
∴f'(x)=4x-1,當(dāng)x=1時,f'(1)=3得切線的斜率為3,所以k=3;
所以曲線在點(1,1)處的切線方程為:
y-1=3(x-1),即3x-y-2=0.
故選D.
點評 本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無解 | B. | 有一解 | C. | 有兩解 | D. | 有無數(shù)解 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{{e^π}(1-{e^{2017π}})}}{{1-{e^{2π}}}}$ | B. | $\frac{{{e^π}(1-{e^{1009π}})}}{{1-{e^π}}}$ | ||
C. | $\frac{{{e^π}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$ | D. | $\frac{{{e^π}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com