分析 利用輔助角公式將函數(shù)進(jìn)行化簡結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.
解答 解:f(x)=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$),
∵$x∈[{0,\frac{π}{2}}]$,
∴2x∈[0,π],2x-$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],
sin(2x-$\frac{π}{4}$)∈[$-\frac{\sqrt{2}}{2}$,1],
$\sqrt{2}$sin(2x-$\frac{π}{4}$)∈[-1,$\sqrt{2}$],
故函數(shù)f(x)的值域?yàn)閇-1,$\sqrt{2}$],
若將函數(shù)y=f(x)的圖象向左平移a(a>0)個(gè)單位長度得到:
y=$\sqrt{2}$sin[2(x+a)-$\frac{π}{4}$]=$\sqrt{2}$sin(2x+2a-$\frac{π}{4}$),
若此時(shí)函數(shù)恰好關(guān)于直線$x=\frac{π}{4}$對(duì)稱,
則2×$\frac{π}{4}$+2a-$\frac{π}{4}$=$\frac{π}{2}$+kπ,
即2a=$\frac{π}{4}$+kπ,
a=$\frac{π}{8}$+$\frac{kπ}{2}$,k∈Z,
故當(dāng)k=0時(shí),實(shí)數(shù)a的最小值為$\frac{π}{8}$,
故答案為:$[-1,\sqrt{2}]$;$\frac{π}{8}$
點(diǎn)評(píng) 本題主要考查三角函數(shù)值域以及三角函數(shù)圖象平移的判斷,根據(jù)三角函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com