6.如圖,在矩形ABCD中,點(diǎn)E為邊CD上任意一點(diǎn),現(xiàn)有質(zhì)地均勻的粒子散落在矩形ABCD內(nèi),則粒子落在△ABE內(nèi)的概率等于$\frac{1}{2}$.

分析 由題意,只要求出矩形和三角形的面積,利用面積比得到所求.

解答 解:由題意,本題符合幾何概型,假設(shè)矩形ABCD的面積為S,則△ABE的面積為$\frac{1}{2}$S,
由幾何概型公式可得粒子落在△ABE內(nèi)的概率等于:$\frac{1}{2}$;
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查了幾何概型概率求法;根據(jù)是明確滿足條件的事件的測度是什么,利用公式解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若框圖所給的程序運(yùn)行結(jié)果為S=90.那么判斷框中應(yīng)填入后的條件是( 。
A.k=9B.k≤8C.k<8D.k>8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=sin2x-cos2x,則f(x)在$x∈[{0,\frac{π}{2}}]$時(shí)的值域是[-1,$\sqrt{2}$];若將函數(shù)y=f(x)的圖象向左平移a(a>0)個(gè)單位長度得到的圖象恰好關(guān)于直線$x=\frac{π}{4}$對稱,則實(shí)數(shù)a的最小值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.甲、乙兩位同學(xué)各拿出六張游戲牌,用作投骰子的獎(jiǎng)品,兩人商定:骰子朝上的面的點(diǎn)數(shù)為奇數(shù)時(shí)甲得1分,否則乙得1分,先積得3分者獲勝得所有12張游戲牌,并結(jié)束游戲.比賽開始后,甲積2分,乙積1分,這時(shí)因意外事件中斷游戲,以后他們不想再繼續(xù)這場游戲,下面對這12張游戲牌的分配合理的是( 。
A.甲得9張,乙得3張B.甲得6張,乙得6張
C.甲得8張,乙得4張D.甲得10張,乙得2張

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,已知點(diǎn)S(0,3),過點(diǎn)S作直線SM,SN與圓Q:x2+y2-2y=0和拋物線C:x2=-2py(p>0)都相切.
(1)求拋物線C和兩切線的方程;
(2)設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)P(0,-2)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)C(其中點(diǎn)B靠近點(diǎn)C),且|AF|=5,求△BCF與△ACF的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把函數(shù)f(x)=sinx(x∈[0,2π])的圖象向右平移$\frac{π}{3}$個(gè)單位后得到函數(shù)g(x)的圖象,則f(x)與g(x)的圖象所圍成的面積為( 。
A.1B.$\sqrt{3}$C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若數(shù)列{xn}滿足:$\frac{1}{{{x_{n+1}}}}-\frac{1}{x_n}$=d(d為常數(shù),n∈N*),則稱{xn}為調(diào)和數(shù)列.已知數(shù)列{an}為調(diào)和數(shù)列,且a1=1,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=15.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)數(shù)列$\left\{{\frac{2^n}{a_n}}\right\}$的前n項(xiàng)和為Sn,是否存在正整數(shù)n,使得Sn≥2015?若存在,求出n的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果存在正實(shí)數(shù)k,對于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k型增函數(shù)”,已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=|x-a|-2a,若f(x)為R上的“2015型增函數(shù)”,則實(shí)數(shù)a的取值范圍是a<$\frac{2015}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了保護(hù)環(huán)境,某化工廠政府部門的支持下,進(jìn)行技術(shù)改進(jìn):每天把工業(yè)廢氣轉(zhuǎn)化為某種化工產(chǎn)品和符合排放要求的氣體.該工廠日處理廢氣的能力不低于40噸但不超過70噸.經(jīng)測算,該工廠處理廢氣的成本y(元)與處理廢氣量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=2x2-120x+5000,且每處理1噸工業(yè)廢氣可得價(jià)值為60元的某種化工產(chǎn)品.
(1)判斷該技術(shù)改進(jìn)能否獲利?如果能獲利,求出最大利潤;如果不能獲利,為了保證工廠在每天生產(chǎn)中都不出現(xiàn)虧損現(xiàn)象,國家財(cái)政部門補(bǔ)貼至少每天多少元?
(2)若國家給予企業(yè)處理廢氣每噸70元財(cái)政補(bǔ)貼,當(dāng)工廠處理量為多少噸時(shí),工廠處理每噸廢氣平均收益最大?

查看答案和解析>>

同步練習(xí)冊答案