【題目】如圖,甲、乙兩個企業(yè)的用電負荷量關于投產(chǎn)持續(xù)時間單位:小時的關系均近似地滿足函數(shù)

1根據(jù)圖象,求函數(shù)的解析式;

2為使任意時刻兩企業(yè)用電負荷量之和不超過,現(xiàn)采用錯峰用電的方式,讓企業(yè)乙比企業(yè)甲推遲小時投產(chǎn),求的最小值

【答案】124

【解析】

試題1由圖象可得:,周期,,求得的解析式;2設乙投產(chǎn)持續(xù)時間為小時,則甲的投產(chǎn)持續(xù)時間為小時,企業(yè)乙用電負荷量隨持續(xù)時間變化的關系式為:;同理,企業(yè)甲用電負荷量變化關系式為:; 兩企業(yè)用電負荷量之和,依題意,有恒成立,求得m最值 ;

試題解析:由圖象可得:

解得

周期,,

,

過點

,

設乙投產(chǎn)持續(xù)時間為小時,則甲的投產(chǎn)持續(xù)時間為小時

由誘導公式,企業(yè)乙用電負荷量隨持續(xù)時間變化的關系式為:;

同理,企業(yè)甲用電負荷量變化關系式為:

兩企業(yè)用電負荷量之和

;

依題意,有恒成立,

恒成立,

展開有:恒成立,------10分

;

整理得到:,

依據(jù)余弦函數(shù)圖像得:

,取得:

的最小值為4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行六面體中,

求證:(1)

(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若曲線處的切線與直線平行,求的值;

(2)若對于任意,都有恒成立,求的取值范圍.

(3)若對于任意,都有成立,求整數(shù)的最大值.

(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: ,圓Q:x2+y2﹣4x﹣2y+3=0的圓心Q在橢圓C上,點P(0,1)到橢圓C的右焦點的距離為2.
(1)求橢圓C的方程;
(2)過點P作直線l交橢圓C于A,B兩點,若SAQB=tan∠AQB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出可行域;

(2)怎樣分配生產(chǎn)任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x﹣4|,則不等式f(x2+2)>f(x)的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓的一組等分點分別涂上紅色或藍色,從任意一點開始,按逆時針方向依次記錄個點的顏色,稱為該圓的一個“階色序”,當且僅當兩個“階色序”對應位置上的顏色至少有一個不相同時,稱為不同的“階色序”.若某圓的任意兩個“階色序”均不相同,則稱該圓為“階魅力圓”.“4階魅力圓”中最多可有的等分點個數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F1 , F2為雙曲線C: 的左,右焦點,P,Q為雙曲線C右支上的兩點,若 =2 ,且 =0,則該雙曲線的離心率是(
A.
B.2
C.
D.

查看答案和解析>>

同步練習冊答案