【題目】已知圓,點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的標(biāo)準(zhǔn)方程;

2)已知過坐標(biāo)原點(diǎn)的直線交曲線、兩點(diǎn),若在曲線上存在點(diǎn),使得,求的面積的最小值.

【答案】1;(2.

【解析】

1)設(shè)的中點(diǎn)為,切點(diǎn)為,連、,則,推出點(diǎn)的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,然后求解曲線方程;

2)由橢圓的對(duì)稱性知坐標(biāo)原點(diǎn)為線段的中點(diǎn),結(jié)合可知,然后分直線與坐標(biāo)軸重合與直線的斜率不為零兩種情況討論,在第一種情況下求出的面積,在第二種情況下,設(shè)直線的方程為,可得出直線的方程為,求出的面積關(guān)于的關(guān)系式,利用基本不等式可求得面積的最小值,比較大小后可得出結(jié)論.

1)設(shè)的中點(diǎn)為,切點(diǎn)為,連,則,

關(guān)于軸的對(duì)稱點(diǎn),連,故

所以點(diǎn)的軌跡是以、為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.

其中,,則,因此,曲線的標(biāo)準(zhǔn)方程為;

2過坐標(biāo)原點(diǎn)的直線交曲線、兩點(diǎn),則坐標(biāo)原點(diǎn)為線段的中點(diǎn),

,則.

①若直線與坐標(biāo)軸重合,則的面積為;

②若直線的斜率不為零,設(shè)直線的方程為,

聯(lián)立,可得,所以,,

同理可得

此時(shí),的面積為,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

,因此,的面積的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為,在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.

)求曲線的極坐標(biāo)方程;

)若過點(diǎn)(極坐標(biāo))且傾斜角為的直線與曲線交于兩點(diǎn),弦的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測(cè)某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.

1A設(shè)備生產(chǎn)的樣本頻率分布直方圖

1B設(shè)備生產(chǎn)的樣本頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

2

18

48

14

16

2

1)請(qǐng)估計(jì)A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;

2)企業(yè)將不合格品全部銷毀后,并對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤(rùn)240元;質(zhì)量指標(biāo)值落在內(nèi)的定為二等品,每件利潤(rùn)180元;其它的合格品定為三等品,每件利潤(rùn)120.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)AB兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤(rùn)的期望值調(diào)整生產(chǎn)規(guī)模,請(qǐng)根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對(duì)哪一套設(shè)備加大生產(chǎn)規(guī)模?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面分別是上的動(dòng)點(diǎn),且.

1)若平面與平面的交線為,求證:;

2)當(dāng)平面平面時(shí),求平面平面所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019101日,慶祝中華人民共和國(guó)成立70周年大會(huì)、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個(gè)方(梯)隊(duì)和聯(lián)合軍樂團(tuán),總規(guī)模約1.5萬人,各型飛機(jī)160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機(jī)構(gòu)統(tǒng)計(jì)了觀看此次閱兵的年齡在30歲至80歲之間的100個(gè)觀眾,按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求的值及這100個(gè)人的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)用分層抽樣的方法在年齡為、的人中抽取5人,再?gòu)某槿〉?/span>5人中隨機(jī)抽取2人接受采訪,求接受采訪的2人中年齡在的恰有1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于正整數(shù),如果個(gè)整數(shù)滿足

,則稱數(shù)組的一個(gè)正整數(shù)分拆”.均為偶數(shù)的正整數(shù)分拆的個(gè)數(shù)為均為奇數(shù)的正整數(shù)分拆的個(gè)數(shù)為.

()寫出整數(shù)4的所有正整數(shù)分拆”;

()對(duì)于給定的整數(shù),設(shè)的一個(gè)正整數(shù)分拆,且,求的最大值;

()對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.

(:對(duì)于的兩個(gè)正整數(shù)分拆,當(dāng)且僅當(dāng)時(shí),稱這兩個(gè)正整數(shù)分拆是相同的.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解一個(gè)智力游戲是否與性別有關(guān),從某地區(qū)抽取男女游戲玩家各200請(qǐng)客,其中游戲水平分為高級(jí)和非高級(jí)兩種.

1)根據(jù)題意完善下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%以上的把握認(rèn)為智力游戲水平高低與性別有關(guān)?

性別

高級(jí)

非高級(jí)

合計(jì)

40

140

合計(jì)

2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;

若甲入選了10人名單,求甲成為參賽選手的概率;

設(shè)抽取的3名選手中女生的人數(shù)為,求的分布列和期望.

附表:,其中

0.010

0.05

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中生作文成績(jī)與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取了100名高中生,根據(jù)問卷調(diào)查,得到以下數(shù)據(jù):

作文成績(jī)優(yōu)秀

作文成績(jī)一般

總計(jì)

課外閱讀量較大

35

20

55

課外閱讀量一般

15

30

45

總計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.5%的把握認(rèn)為課外閱讀量的大小與作文成績(jī)優(yōu)秀有關(guān);

2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再?gòu)倪@6名高中生中隨機(jī)選取2名進(jìn)行面談,求面談的高中生中至少有1名作文成績(jī)優(yōu)秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案