設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且當(dāng)x∈(0,1]時,f(x)=loga(x+1),a>1.
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(x)>f(1-2x).
考點:函數(shù)單調(diào)性的性質(zhì),函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)的奇偶性,從而得到函數(shù)的解析式;(2)先求出函數(shù)的單調(diào)性,結(jié)合函數(shù)的定義域,從而得到不等式組,解出即可.
解答: 解:(1)∵f(x)在[-1,1]上是奇函數(shù),
∴f(-x)=
log
1-x
a
=-f(x),
∴f(x)=
log
(x+1)
a
,0≤x≤1
-log
(1-x)
a
,-1≤x<0
,
(2)由題意得:函數(shù)f(x)在定義域上遞增,
-1≤x≤1
x>1-2x
-1≤1-2x≤1
,解得:
1
3
<x≤1.
點評:本題考查了函數(shù)的單調(diào)性,函數(shù)的奇偶性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
4
+y2
=1與雙曲線
x2
2
-y2
=1有相同的焦點F1、F2,P是這兩條曲線的一個交點,則△F1PF2的面積是(  )
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式x2+x-a(a-1)>0,(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做) 定積分
0
(1-cosx)dx的值為( 。
A、2πB、2π+1
C、-2πD、2π-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-m)2=4內(nèi)切,則m的值( 。
A、-2B、-1
C、-2或-1D、2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一個幾何體的三視圖是由兩個矩形和一個圓所組成,則該幾何體的表面積是(  )
A、7πB、8π
C、10πD、π+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一箱產(chǎn)品中有正品4件,次品3件,從中任取2件,下列四組事件:
①恰有一件次品和恰有兩件次品;   
②至少有一件次品和全是次品;
③至少有一件正品和至少有一件次品;
④至少有一件次品和全是正品.
其中兩個事件互斥的組是
 
(填上序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)與函數(shù)g(x)=2x互為反函數(shù),且f(a)+f(b)=4,則
1
a
+
1
b
的最小值為( 。
A、1
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|1-
x-1
3
|≤2,q:x2-2x+1-m2≤0(m>0).
(1)求¬p;
(2)若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案