【題目】如果某地的財政收入與支出滿足線性回歸方程(單位:億元),其中,如果今年該地區(qū)財政收入10億元,則年支出預(yù)計不會超過( )

A. 10.5億 B. 10億 C. 9.5億 D. 9億

【答案】A

【解析】分析:已知線性回歸方程為y=bx+a+e,將b=0.8、a=2代入可將其化為y=0.8x+2+e;

x=10代入上步得到的方程中,結(jié)合e的取值范圍即可得到y的取值范圍,進而確定y的最大值

詳解:因為線性回歸方程為y=bx+a+e,b=0.8,a=2,

所以y=0.8x+2+e.

當(dāng)x=10時,y=0.8x+2+e=10+e.

因為|e|≤0.5,

所以-0.5≤e≤0.5,

于是有9.5≤y≤10.5,

從而可得今年支出預(yù)計不超出10.5億元.

故選A.

點晴本題是一道關(guān)于線性回歸方程的題目,解題的關(guān)鍵是理清變量之間的數(shù)量關(guān)系;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》中有如下問題:“今有白米一百八十石,令三人從上及和減率分之,只云甲多丙米三十六石,問:各該若干?”其意思為:“今有白米一百八十石,甲、乙、丙三人來分,他們分得的白米數(shù)構(gòu)成等差數(shù)列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”請問:乙應(yīng)該分得( )白米

A. 96石B. 78石C. 60石D. 42石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù)c>0,整數(shù)p>1,n∈N*
(1)證明:當(dāng)x>﹣1且x≠0時,(1+x)p>1+px;
(2)數(shù)列{an}滿足a1 ,an+1= an+ an1p . 證明:an>an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機抽取高二年級名學(xué)生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

數(shù)學(xué)成績

95

75

80

94

92

65

67

84

98

71

物理成績

90

63

72

87

91

71

58

82

93

81

序號

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績

67

93

64

78

77

90

57

83

72

83

物理成績

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績分以上為優(yōu)秀物理成績分(含分)以上為優(yōu)秀.

(Ⅰ)根據(jù)上表完成下面的列聯(lián)表

數(shù)學(xué)成績優(yōu)秀

數(shù)學(xué)成績不優(yōu)秀

合計

物理成績優(yōu)秀

物理成績不優(yōu)秀

12

合計

20

(Ⅱ)根據(jù)題(Ⅰ)中表格的數(shù)據(jù)計算,有多少的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?

(Ⅲ)若按下面的方法從這人中抽取人來了解有關(guān)情況將一個標(biāo)有數(shù)字,,,,的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號,試求抽到號的概率.

參考數(shù)據(jù)公式:①獨立性檢驗臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

②獨立性檢驗隨機變量值的計算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強消防安全意識,某中學(xué)做了一次消防知識講座,從男生中隨機抽取了50人,從女生中隨機抽取了70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

15

35

50

女生

30

40

70

總計

45

75

120

(1)試判斷能否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);

(2)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機選出6名組成宣傳小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率。

附:

P(K2k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則(
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行新課堂教學(xué)法, 某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式, 在甲、乙兩個平行班進行教學(xué)實驗, 為了解教學(xué)效果, 期中考試后, 分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計, 作出的莖葉圖如下圖, 記成績不低于70分者為成績優(yōu)良.

(1) 分別計算甲、乙兩班20個樣本中, 化學(xué)成績前十的平均分, 并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更佳;

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

 

(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,是否有95%的把握認(rèn)為成績優(yōu)良與教學(xué)方式關(guān)”?

0.05

0.010

3.841

6.635

查看答案和解析>>

同步練習(xí)冊答案