15.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=5,那么tanα的值為( 。
A.-2B.2C.-$\frac{27}{14}$D.-$\frac{23}{16}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系可得$\frac{tanα-2}{3tanα+5}$=5,由此求得tanα的值.

解答 解:∵$\frac{sinα-2cosα}{3sinα+5cosα}$=$\frac{tanα-2}{3tanα+5}$=5,
∴tanα=-$\frac{27}{14}$,
故選:C.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)z=$\frac{2+i}{i}$的共軛復(fù)數(shù)是( 。
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.給出下列四個命題:
①命題“對任意x∈R,有x2≥0”的否定是“存在x0∈R,有x02≥0”;
②“存在x0∈R,使得x02-x0>0”的否定是:“任意x∈R,均有x2-x<0”;
③任意x∈[-1,2],x2-2x≤3;
④存在x0∈R,使得x02+$\frac{1}{x_{0}^{2}+1}$≤1.
其中真命題的序號③④(填寫所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=tan(2x+$\frac{π}{3}$),則f(x)的定義域為{x|x≠$\frac{π}{12}+\frac{kπ}{2},k∈Z$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線y=$\frac{sinx}{e^x}$在點(diǎn)(0,0)處的切線方程為x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.△ABC的三個內(nèi)角A,B,C所對邊的長分別為a,b,c,設(shè)向量$\overrightarrow{p}$=(a+c,b),$\overrightarrow{q}$=(b,c-a).若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角C的大小為( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x,y滿足約束條件$\left\{\begin{array}{l}{x-2y+1≤0}\\{2x-y+2≥0}\\{x+y-2≤0}\end{array}\right.$,z=3x+y+m的最大值為1,則m為( 。
A.-1B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則f(-3)=$\frac{1}{8}$,f[f($\frac{1}{3}$)]=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知動點(diǎn)M(x,y)的坐標(biāo)滿足$\sqrt{{{(x-2)}^2}+{y^2}}$=|x+2|,則動點(diǎn)M的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.以上均不對

查看答案和解析>>

同步練習(xí)冊答案