18.在下列各散點圖中,兩個變量具有正相關關系的是( 。
A.B.C.D.

分析 根據(jù)在兩個變量的散點圖中,樣本點成帶狀分布,這兩個變量具有線性相關關系,而正相關關系的散點圖是從左下角向右上角變化,由此判斷得出正確的結(jié)論.

解答 解:根據(jù)題意,依次分析選項:
對于A、是相關關系,但不是正相關關系,不符合題意;
對于B、是相關關系,但是負相關關系,不符合題意;
對于C、所示的散點圖中,樣本點不成帶狀分布,則這兩個變量不具有線性相關關系,不符合題意;
對于D、是相關關系,且是正相關關系,符合題意;
故選:D.

點評 本題考查了散點圖的應用問題,也考查了線性相關的判斷問題,注意理解散點圖的定義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中真命題的個數(shù)是( 。
 ①命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1>0”;
 ②若命題p,q中有一個是假命題,則¬(p∧q)是真命題;
 ③在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分條件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的正半軸重合.曲線C的極坐標方程為ρcosθ-ρsinθ+3=0,曲線D的參數(shù)方程為$\left\{\begin{array}{l}x=2+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.$(α為參數(shù)).
(1)將曲線C的極坐標方程化為直角坐標方程,曲線D的參數(shù)方程化為普通方程;
(2)若點P為直線$\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=4+\sqrt{2}t\end{array}\right.$(t為參數(shù))上的動點,點Q為曲線D上的動點,求P,Q兩點間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩部分的函數(shù)稱為圓煌一個“太極函數(shù)”下列有關說法中:
①對圓O:x2+y2=1的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)f(x)=sinx+1是圓O:x2+(y-1)2=1的一個太極函數(shù);
③存在圓O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圓O的太極函數(shù);
④直線(m+1)x-(2m+1)y-1=0所對應的函數(shù)一定是圓O:(x-2)2+(y-1)2=R2(R>0)的太極函數(shù).
所有正確說法的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.袋中裝有9個形狀大小相同但顏色不同的小球,其中紅色、藍色、黃色球各3個,現(xiàn)從中隨機地連取3次球,每次取1個,記事件A為“3個球都是紅球”,事件B為“3 個球顏色不全相同”
(Ⅰ)若每次取后不放回,分別求出事件A和事件B的概率(用數(shù)字作答);
(Ⅱ)若每次取后放回,分別求出事件A和事件B的概率(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,則z=x+y的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.王安石在《游褒禪山記》中寫道“世之奇?zhèn)、瑰怪,非常之觀,常在于險遠,而人之所罕至焉,故非有志者不能至也”,請問“有志”是到達“奇?zhèn)、瑰怪,非常之觀”的( 。
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知等比數(shù)列{an}的公比為q,前n項和為Sn,若an>0,q>1,a3+a5=20,a2•a6=20,則S5=( 。
A.30B.31C.62D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.“向量$\overrightarrow{a}$,$\overrightarrow$共線”是“向量2$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$共線”的充要 條件.

查看答案和解析>>

同步練習冊答案