7.已知橢圓C:$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1,直線l:$\frac{x}{12}$+$\frac{y}{8}$=1.
(I)以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求橢圓C與直線l的極坐標(biāo)方程;
(Ⅱ)已知P是l上一動(dòng)點(diǎn),射線OP交橢圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足|OQ|•|OP|=|OR|2.當(dāng)點(diǎn)P在l上移動(dòng)時(shí),求點(diǎn)Q在直角坐標(biāo)系下的軌跡方程.

分析 (I)將x=ρcosθ,y=ρsinθ分別代入橢圓方程和直線方程,化簡整理即可得到極坐標(biāo)方程;
(II)設(shè)Q(ρ,θ),由|OQ|•|OP|=|OR|2結(jié)合(Ⅰ)即可得到所求直角坐標(biāo)方程.

解答 解:(I)橢圓C:$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1,直線l:$\frac{x}{12}$+$\frac{y}{8}$=1,
將x=ρcosθ,y=ρsinθ分別代入上式,化簡可得,
C:${ρ^2}=\frac{48}{{2{{cos}^2}θ+3{{sin}^2}θ}}$,l:$ρ=\frac{24}{2cosθ+3sinθ}$;
(II)設(shè)Q(ρ,θ),
由|OQ|•|OP|=|OR|2
結(jié)合(Ⅰ)可得,ρ•$\frac{24}{2cosθ+3sinθ}$=$\frac{48}{2co{s}^{2}θ+3si{n}^{2}θ}$,
由x=ρcosθ,y=ρsinθ,可得
2x2+3y2-4x-6y=0.

點(diǎn)評 本題考查極坐標(biāo)和直角坐標(biāo)的互化,考查運(yùn)算求解的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)當(dāng)x∈[2,4]時(shí),求f(x)的解析式;
(2)計(jì)算:f(0)+f(1)+f(2)+…+f(201).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=4t}\\{y=1+3t}\end{array}}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)) 則圓C上的點(diǎn)到直線l的距離的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列三函數(shù)中,與sin$\frac{π}{3}$數(shù)值相同的是( 。
①sin(nπ+$\frac{4}{3}$π)
②cos(2nπ+$\frac{π}{6}$);
③sin(2nπ+$\frac{π}{3}$);
④cos[(2n+1)π-$\frac{π}{6}$];
⑤sin[(2n+1)π-$\frac{π}{3}$](n∈Z).
A.①②B.①③④C.②③⑤D.①⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.過拋物線C:y2=2px(p>0)的焦點(diǎn)F作直線交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),|AB|=8p,且S△AOB=4,則p的值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)它的離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)是(-1,0),過直線x=4上一點(diǎn)引橢圓E的兩條切線,切點(diǎn)分別是A、B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的點(diǎn)(x0,y0)處的切線方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{^{2}}$=1.求證:直線AB恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅲ)記點(diǎn)C為(Ⅱ)中直線AB恒過的定點(diǎn),問否存在實(shí)數(shù)λ,使得|$\overrightarrow{AC}$+|$\overrightarrow{BC}$|=λ|$\overrightarrow{AC}$|•|$\overrightarrow{BC}$|成立,若成立求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$.且過點(diǎn)($\frac{\sqrt{6}}{2}$,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l過橢圓C的右焦點(diǎn)F且與橢圓C交于A,B兩點(diǎn),在橢圓C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)F1(-c,0),F(xiàn)2(c,0)分別是橢圓E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)P($\sqrt{3}$,2)在橢圓E上,且c=$\sqrt{3}$,求橢圓E的方程;
(Ⅱ)已知橢圓E的離心率為$\frac{{\sqrt{2}}}{2}$,若過點(diǎn)F1(-c,0)的直線交橢圓E于A,B兩點(diǎn),且|AF1|=3|F1B|.證明:AB⊥AF2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列1,-1,-3,-5,…,則-89是它的第( 。╉(xiàng).
A.92B.47C.46D.45

查看答案和解析>>

同步練習(xí)冊答案