已知函數(shù).
(1)求:的值;
(2)類比等差數(shù)列的前項(xiàng)和公式的推導(dǎo)方法,求:
 的值.

(1), (2)

解析試題分析:(1)∵,∴,
(2) ∵,∴,∴令S= ,則S=,∴2S=,∴S=,又f(1)= ,∴
考點(diǎn):本題考查了倒序相加法的運(yùn)用
點(diǎn)評(píng):如果一個(gè)數(shù)列(一個(gè)式子),與首末兩項(xiàng)等距的兩項(xiàng)之和等于首末兩項(xiàng)之和,可采用把正著寫和與倒著寫和的兩個(gè)和式相加,就得到一個(gè)常數(shù)列的和,這種方法就是倒序相加法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且a3=5,a5=9;數(shù)列的前n項(xiàng)和為Sn,且Sn+bn=2.    
(1)求數(shù)列,的通項(xiàng)公式;
(2)若為數(shù)列的前n項(xiàng)和,求.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bnan+1an(n∈N*).若b3=-2,b10=12,求a8的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等差數(shù)列,其前項(xiàng)和為,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明:是等比數(shù)列,并求其前項(xiàng)和.
(3) 設(shè),求其前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,且滿足:,;數(shù)列滿足 
(1)求;
(2)記數(shù)列,若的前項(xiàng)和為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項(xiàng)的和為,且 ().
(1) 求數(shù)列,的通項(xiàng)公式;
(2) 記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,的等差中項(xiàng)為1,求等差數(shù)列{an}的通項(xiàng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知等差數(shù)列的公差, 是等比數(shù)列,又
(1)求數(shù)列及數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知等差數(shù)列{}的前項(xiàng)和為,且。數(shù)列為等比數(shù)列,且首項(xiàng),
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和為

查看答案和解析>>

同步練習(xí)冊(cè)答案